期刊文献+

基于安全案例推理的网络安全分析方法研究与应用 被引量:8

A Network Security Analysis Method Research and Application Based on Case-based Reasoning
在线阅读 下载PDF
导出
摘要 当前 ,对复杂网络环境下容易产生的安全漏洞关联与传播问题进行分析与推理是网络安全研究的一个重要方面 ,文中对网络漏洞关联问题进行了分析 ,提出了多点漏洞的概念 ,采用图论的方法对多点漏洞问题进行了数学模型描述 ;通过对网络安全攻击案例进行建模分析 ,然后将网络漏洞信息组织成案例的知识表示形式 ,采用案例推理方法对多点之间的漏洞传播进行分析检测 ,并对漏洞检测中的风险进行了分析 . At present it is an important field of network security to do researches on vulnerability relevance and propagation in the environment of network, this paper carries out research on vulnerability association problem and proposes the concept of 'multi-node' vulnerability. The paper applies graph theory method to the representation of the 'multi-node' vulnerability and represents information of network vulnerability as case base. The paper applies case-based reasoning to analyze and check the propagation path of the 'multi-node' vulnerability in the network and carries out risk analysis in the process of analysis and checking.
出处 《小型微型计算机系统》 CSCD 北大核心 2003年第12期2082-2085,共4页 Journal of Chinese Computer Systems
关键词 网络安全 多点漏洞 案例推理 风险分析 漏洞传播 network security multi-node vulnerability case-based reasoning risk analysis
  • 相关文献

参考文献1

二级参考文献7

  • 11,Agrawal R, Mannila H, Srikant R et al. Fast discovery of association rules. In: Fayyad M, Piatetsky-Shapiro G, Smyth P eds. Advances in Knowledge Discovery and Data Mining. Menlo Park, California: AAAI/MIT Press, 1996. 307-328
  • 22,Brin S, Motwani R, Ullman J D et al. Dynamic itemset counting and implication rules for market basket data. In: Proc the ACM SIGMOD International Conference on Management of Data, Tucson, Arizon, 1997. 255-264
  • 33,Fayyad U M, Piatesky-shapiro G, Smyth P P. From data mining to knowledge discovery: an overview. In: Fayyad M, Piatetsky-Shapiro G, Smyth P eds. Advances in Knowledge Discovery and Data Mining. California:AAAI Press, 1996. 1-36
  • 44,Piatesket-Shapiro G. Discovery, analysis, and presentation of strong rules. In: Piatesky-Shapiro G, Frawley W J eds. Advances in Knowledge Discovery and Data Mining. Menlo Park, California:AAAI/MIT Press, 1991. 229-238
  • 55,Silberschatz A, Stonebraker M, Ullman J. What makes patterns interesting in knowledge discovery sysstems. IEEE Trans on Knowledge and Data Engineering, 1996, 8(6):970-974
  • 66,Symth P, Goodman R M. An information theoretic approach to rule induction from databases. IEEE Trans on Knowledge and Data Engineering, 1992, 4(4):301-316
  • 77,Toivonen H, Klemettinen M, Ronkainen P et al. Pruning and grouping discovered association rules. In: Mlnet Workshop on Statistics, Machine Learning, and Discovery in Database, Gete, Greece, 1995. 47-52

共引文献21

同被引文献73

引证文献8

二级引证文献124

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部