期刊文献+

青蛙视觉行为与计算机模拟概述 被引量:1

Research on Frog Visual Behavior and Its Computer Simulation
在线阅读 下载PDF
导出
摘要 青蛙视觉行为研究对一般视觉和计算机视觉的研究有着重要意义。对国内外青蛙视行为的研究工作做了概述,对多个青蛙视行为信息加工模型进行了研究,最后总结了对青蛙视觉行为的计算机模拟。 Study of frog visual behavior is significant to the computer vision theory. The research on the frog visual behavior over the last several decades is reviewed and several successful information procession models of frog vision are studied. Also, our research on computer simulation of frog visual behavior is introduced.
出处 《武汉理工大学学报(信息与管理工程版)》 CAS 2003年第4期1-5,共5页 Journal of Wuhan University of Technology:Information & Management Engineering
基金 国家自然科学基金资助项目(60275040).
关键词 青蛙视觉行为 视觉模型 计算机模拟 frog visual behavior visual model computer simulation
  • 相关文献

参考文献15

  • 1维纳.控制论[M].北京:科学出版社,1963..
  • 2Ewert J P.蟾蜍的视觉系统: 模式识别系统的行为和生理研究[A]..视觉系统模式识别译文集[C].北京:科学出版社,1980..
  • 3朱翔.[D].武汉:武汉理工大学自动化学院,2002.
  • 4陶勇.[D].武汉:武汉理工大学自动化学院,2002.
  • 5Blackmore C.中枢视觉加工[A]..视觉系统模式识别译文集[C].北京:科学出版社,1980.132-134.
  • 6王维昆.[D].武汉:武汉理工大学自动化学院,2002.
  • 7吴方才.[D].武汉:武汉理工大学自动化学院,2002.
  • 8张秀丽,郑浩峻,陈恳,段广洪.机器人仿生学研究综述[J].机器人,2002,24(2):188-192. 被引量:58
  • 9田明杰,王天珍,赵亮.青蛙视信息加工生理数据的计算机分析[J].武汉理工大学学报(信息与管理工程版),2003,25(1):55-57. 被引量:1
  • 10王天珍.计算机视觉不需要重建[J].信息与控制,1999,28(1):47-52. 被引量:2

二级参考文献61

共引文献148

同被引文献19

  • 1李小平,边肇祺,汪云九.二维Gabor滤波器的快速实现[J].自动化学报,1989,15(2):136-141. 被引量:3
  • 2Lee Y. A Neural Network Model of Frog Retina: A Discrete Time-Space Approach. Massachusetts Amherst: University of Massachusetts Amherst, 1986, 10: 415-426.
  • 3Nishio K, Yonezu H, Furukawa Y. Analog integrated circuit for motion detection with simple-shape recognition based on frog vision system. Optical Review, 2007, 14(5): 271-281.
  • 4Xiao S S, Gao N. Research on visual invariance based on dynamic receptive field. In: Proceedings of the 2008 International Conference on Computer Science and Software Engineering. Wuhan, China: IEEE, 2008, 1: 273-276.
  • 5Zhang P. Extracting visual saliency based on multi-scale receptive field template. In: Proceedings of the 2nd International Conference on Digital Manufacturing and Automation (ICDMA). Zhangjiajie, China: IEEE, 2011. 527-530.
  • 6Ekvall S, Kragic D. Receptive field cooccurrence histograms for object detection. In: Proceedings of the 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems. Edmonton, Alberta, Canada: IEEE, 2005. 84-89.
  • 7Perez C A, Salinas C A, Estevez P A, Valenzuela P M. Genetic design of biologically inspired receptive fields for neural pattern recognition. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2003, 33(2): 258-270.
  • 8Yang B, Zhao Q Y, Zhang R, Yin B L. Receptive field based image modeling method for interactive segmentation. In: Proceedings of the 2nd International Congress on Image and Signal Processing. Tianjin, China: IEEE, 2009. 1-4.
  • 9Lee D H, Lee J J. Incremental receptive field weighted actor-critic. IEEE Transactions on Industrial Informatics, 2013, 9(1): 62-71.
  • 10Lettvin J Y, Maturana H R, Mcculloch W S, Pitts W H. What the frog's eye tells the frog's brain. Proceedings of the IRE, 1959, 47(11): 1940-1951.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部