期刊文献+

神经网络与模拟退火算法结合的锅炉低NO_x燃烧优化 被引量:4

The Utility Boiler Low NO_x Combustion Optimization Based on ANN and Simulated Annealing Algorithm
在线阅读 下载PDF
导出
摘要 对某 6 0 0MW燃煤电站锅炉进行了多工况热态NOx 排放特性测量 ,在利用多层前向神经网络对该锅炉的NOx 排放特性进行建模的基础上 ,将神经网络模型与模拟退火全局优化算法相结合 ,实现了锅炉的低NOx 燃烧的优化 ,计算得到可获得低NOx 排放浓度的具体燃烧配风方案 .文中对 2种不同退火参数的模拟退火算法进行了比较 ,结果说明采用T0 =5 0K ,α=0 .6的参数可以获得较好的寻优效果 .本文研究结果为实现大型电站锅炉低NOx 燃烧控制的在线优化技术打下了基础 . With the developing restrict environmental protection demand, more attention was paid on the low NO x combustion optimizing technology for its cheap and easy property. In this work, field experiments on the NO x emissions characteristics of a 600MW coal-fired boiler were carried out, on the base of the artificial neural network (ANN) modeling, the simulated annealing (SA) algorithm was employed to optimize the boiler combustion to achieve a low NO x emissions concentration, and the combustion scheme was obtained. Two sets of SA parameters were adopted to find a better SA scheme, the result show that the parameters of T 0=50K,α=0.6 can lead to a better optimizing process. This work can give the foundation of the boiler low NO x combustion on-line control technology.
出处 《环境科学》 EI CAS CSCD 北大核心 2003年第6期63-67,共5页 Environmental Science
基金 国家自然科学基金资助项目 (5 0 2 0 6 0 18) 国家重点基础研究发展规划项目 (G2 0 0 1CB40 96 0 0 G19990 2 2 2 0 4)
关键词 锅炉 氮氧化物 模拟退火算法 燃煤电站 排放特性 多层前向神经网络 utility boiler NO x emission simulated annealing algorithm
  • 相关文献

参考文献5

  • 1周昊,茅建波,池作和,蒋啸,王正华,岑可法.燃煤锅炉低氮氧化物燃烧特性的神经网络预报[J].环境科学,2002,23(2):18-22. 被引量:40
  • 2Van R P der Lans, Glarborg P, K Dam-Johansen. Influence of process parameters on nitrogen oxide formation in pulverized coal burners. Progress in Energy and Combustion Science, 1997, 23(4): 349-377.
  • 3Fan J R et al. Numerical and experimental investigation on the reduction of NOn emission in a 600MW utility furnace by using OFA. Fuel, 1999, 78 (12) : 1387- 1394.
  • 4Tronei S, Baratti R, Servida A. Monitoring pollutant emissions in a 4.8 MW power plant through neural network. Neurocomputing, 2002, 43(1-4): 3-15.
  • 5Ikonen E, Najim K, Kortela U. Neuro-fuzzy modelling of power plant flue-gas emissions. Engineering Applications of Artificial Intelligence, 2000, 13(6) : 705- 717.

共引文献39

同被引文献28

  • 1王林,金保昇,沈凯,周长城.基于环境监管平台的脱硫烟气SVR模型及优化[J].环境工程,2013,31(S1):344-347. 被引量:3
  • 2许昌,吕剑虹.基于生成机理的燃煤电站锅炉NO_x排放量神经网络模型[J].中国电机工程学报,2004,24(10):233-237. 被引量:26
  • 3郭建民,刘石,姜凡,李志宏.基于SVM的对冲燃煤锅炉NO_x排放特性[J].燃烧科学与技术,2006,12(3):243-247. 被引量:12
  • 4王春林,周昊,李国能,凌忠钱,岑可法.基于遗传算法和支持向量机的低NO_x燃烧优化[J].中国电机工程学报,2007,27(11):40-44. 被引量:68
  • 5Olden Julian D, Jackson Donald A. Illuminating the "black box": a randomization approach for understanding variable contri- butions in artificial neural networks [J]. Ecological Modelling, 2002,154(1):135-150.
  • 6El-Din Ahmed Gamal, Smith Daniel. A neural network model to predict the wastewater inflow incorporating rainfall events [J].Water Research, 2002,36(5 ): 1115 - 1126.
  • 7Punal A. Adcanced monitoring and control of anaerobic wastewater treatment plants: diagnosis and supervision by a fuzzybased expert system [J]. Water Science and Technology, 2001, 43(7):1191-1198.
  • 8Du Y G, Taygi R D. Use of fuzzy neural-net model for rule generation of activated sludge process [J]. Process Biochemistry, 1999,35(6):77-83.
  • 9Giesekea A, Arnzb P, Amann R, et al. Simultaneous P and N removal in a sequencing batch biofilm reactor: insights from reactor-and microscale investigations [J]. Water Research, 2002, 36(2):501-509.
  • 10Lee Tsung-Lin. Back-propagation neural network for the prediction of the short-term storm surge in Taichung harbor, Taiwan [J]. Engineering Applications of Artificial InteUigence, 2008,21(1): 63-72.

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部