期刊文献+

Heisenberg群H^n上的有界变差函数

BV FUNCTIONS IN THE HEISENBERG GROUP H^n
在线阅读 下载PDF
导出
摘要 本文有四个目标:一是研究了H-Caccioppoli集的几何性质;二是证明了H^n上有界变差函数u的跳跃集J_u是H-Rectifiable并刻画不连续集S_u和跳跃集J_u的特征;三是证明了u在Ω上几乎处处近似可微并研究u的逐点行为;最后还证明了D_Hu作为Radon测度能分解成三部分,即D_Hu=L_u·^(2n+1)+2w_(2n-1)/w_(2n+1)(u^+-u^-)v_uS_d^(Q-1)J_u+_H^cu,其中L_u ∈ R^(2n)是u的近似微分,u^+,u^-,v_u分别是u在跳跃点的近似上、下极限和跳跃方向。 There are four goals: the first is to investigate some geometric properties of H-Cacciop-poli sets, the second is to prove that for u ∈ BVH(Ω) its jump set Ju is H-Rectifiable and to characterize discontinuity set Su and jump set Ju, the third is to prove that u ∈ BVH(Ω) is approximately differentiate a.e. in Ω and investigate pointwise behavior of u, while the last and the most important is to show that DHU as a Radon measure can be split into three parts. Namely, is the approximate differential of u, and u+, u-, vu are respectively the approximate upper limit, approximate lower limit and jump direction of u at a jump point.
出处 《数学年刊(A辑)》 CSCD 北大核心 2003年第5期541-554,共14页 Chinese Annals of Mathematics
基金 国家自然科学基金(No.19771048)
关键词 有界变差函数 HEISENBERG群 Radon测度分解 H—Rectifiability 近似微分 BVH function, Heisenberg group, Decomposition of Radon measures, H-Caccioppoli set, H-rectifiability, Approximate differential
  • 相关文献

参考文献16

  • 1Ambrosio, L, Some fine properties of sets of finite perimeter in Ahlfors regular metric measure spaces [J], Adv Math, 159(2001), 51-67.
  • 2Franchi, B, Serapioni, R & Cassano, F S, Rectifiablity and perimeter in the Hensenberg group [J], Math Ann, 321(2001), 479-531.
  • 3Garofalo, N & Nhieu, D M, Isoperimetric and Sobolev inequalities for Carnot-Caratheodory spaces and the existence of minimal surfaces [J], Comm Pure Appl Math, 49(1996), 1081-1144.
  • 4Gromov, M, Carnot-Caratheodory spaces seen from within [M], in Sub-Riemannian Geometry, Progress in Mathematics 144. ed. by A Bellaiche and J Risler, Birkhauser, Basel, 1996, 79-323.
  • 5Capogna, L & Lin, F H, Legendrian energy minimizers Part I, Heisenberg group target [J], Calc Var, 12(2001), 145-171.
  • 6Federer, H, Geometric measure theory [M], Springer-Verlag, Berlin, Heidelberg, New York, 1969.
  • 7Monti, R & Cassano, F S, Surface measures in Carnot-Caratheodry spaces [J], Calc Var, 13(2001), 339-376.
  • 8Lin, F H & Yang, X P, An introduction to geometric measure theory [M], Science Press, Beijing, 2002.
  • 9Balogh, Z, Size of characteristic sets and functions with prescribed gradient [D], Preprint, (2000).
  • 10Gromov, M, Structures metriques pour les varietes Rimannienners [M], CEDIC, Paris,1981.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部