期刊文献+

Reduction of nitrate from groundwater:powder catalysts and catalytic membrane 被引量:5

Reduction of nitrate from groundwater:powder catalysts and catalytic membrane
在线阅读 下载PDF
导出
摘要 The reduction of nitrate contaminant in groundwater has gained renewed and intensive attention due to the environmental problems and health risks. Catalytic denetrification presents one of the most promising approaches for the removal of nitrate from water. Catalytic nitrate reduction from water by powder catalysts and catalytic membrane in a batch reactor was studied. And the effects of the initial concentration, the amounts of catalyst, and the flux H 2 on the nitrate reduction were also discussed. The results demonstrated that nitrate reduction activity and the selectivity to nitrogen gas were mainly controlled by diffusion limitations and the mass transfer of the reactants. The selectivity can improved while retaining a high catalytic activity under controlled diffusion condition or the intensification of the mass transfer, and a good reaction condition. The total nitrogen removal efficiency reached above 80%. Moreover, catalytic membrane can create a high effective gas/liquid/solid interface, and show a good selectivity to nitrogen in comparative with the powder catalyst, the selectivity to nitrogen was improved from 73 4% to 89 4%. The reduction of nitrate contaminant in groundwater has gained renewed and intensive attention due to the environmental problems and health risks. Catalytic denetrification presents one of the most promising approaches for the removal of nitrate from water. Catalytic nitrate reduction from water by powder catalysts and catalytic membrane in a batch reactor was studied. And the effects of the initial concentration, the amounts of catalyst, and the flux H 2 on the nitrate reduction were also discussed. The results demonstrated that nitrate reduction activity and the selectivity to nitrogen gas were mainly controlled by diffusion limitations and the mass transfer of the reactants. The selectivity can improved while retaining a high catalytic activity under controlled diffusion condition or the intensification of the mass transfer, and a good reaction condition. The total nitrogen removal efficiency reached above 80%. Moreover, catalytic membrane can create a high effective gas/liquid/solid interface, and show a good selectivity to nitrogen in comparative with the powder catalyst, the selectivity to nitrogen was improved from 73 4% to 89 4%.
出处 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2003年第5期600-606,共7页 环境科学学报(英文版)
基金 TheNationalKeyBasicResearchFoundationofChina(No .2 0 0 2CB4 10 80 )
关键词 Pd Cu catalysts HYDROGENATION catalytic membrane NITRATE AMMONIUM Pd Cu catalysts hydrogenation catalytic membrane nitrate ammonium
  • 相关文献

参考文献1

二级参考文献1

共引文献8

同被引文献10

引证文献5

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部