摘要
利用Lyapunov方法及Riccati不等式方法讨论了区间矩阵[Am,AM]的稳定性.首先将区间矩阵的稳定性问题等价地转化为一个代数Riccati不等式AT0P+PA0+PEETP+FTF<0正定解的存在性问题,然后利用H∞范数理论,获得了区间矩阵稳定的充要条件为A0稳定且‖F(sI-A0)-1E‖∞<1.
This paper discusses the stability of interval matrices Am,AM] by the Lyapunov and Riccati inequality methods. First, the problem of interval matrices stability is converted into a solvable problem of a Riccati inequality, i.e. AT0P+PA0+PEETP+FTF<0. Then, by using the Hinfinity norm theory, the necessary and sufficient condition of the stability of interval matrices is obtained which is A0 stable and ‖F(sI-A0)-1E‖∞<1. At last, four examples are given as the application of the results.
出处
《中南工业大学学报》
CSCD
北大核心
2003年第5期590-592,共3页
Journal of Central South University of Technology(Natural Science)
基金
国家教育部博士点基金资助项目(2000053303).