期刊文献+

非自治时滞反馈控制系统的周期解分岔和混沌 被引量:18

BIFURCATIONS AND CHAOS DUE TO TIME DELAY IN A DELAYED CONTROL NON-AUTONOMOUS SYSTEM
在线阅读 下载PDF
导出
摘要 研究时滞反馈控制对具有周期外激励非线性系统复杂性的影响机理,研究对应的线性平衡态失稳的临界边界,将时滞非线性控制方程化为泛函微分方程,给出由Hopf分岔产生的周期解的解析形式。通过分析周期解的稳定性得到周期解的失稳区域,使用数值分析观察到时滞在该区域可以导致系统出现倍周期运动、锁相运动、概周期运动和混沌运动以及两条通向混沌的道路:倍周期分岔和环面破裂。其结果表明,时滞在控制系统中可以作为控制和产生系统的复杂运动的控制“开关”。 The mechanism for the action of delayed feedback control in a nonlinear system with external periodic forcing is investigated in this paper. The system under consideration is a nonlinear controlled system with delayed position feedbacks and external periodic forcing. The time delay is chosen as a control parameter (or bifurcation parameter) in order to observe effect of time delay on the system. The critical stability conditions for a static equilibrium of the linearized system are studied. Moreover, functional analysis is used to change the delayed system into a functional differential equation (FDE) to obtain the periodic solution from Hopf bifurcation analytically in a closed form. The good agreements with comparing the analytical solution with the numerical solution demonstrate the validity and accuracy of the method provided in the present paper. The stability of the periodic solution is also analyzed to show the stable and unstable region in time delay. The numerical simulation is employed to observe effect of time delay on the dynamics of the system such as the stability and bifurcation of an equilibrium point, periodic solution, period-doubling, phase-locked, quasi-periodic motion and even chaos. Two routes to chaos are represented, namely period-doubling bifurcation and torus breaking. This suggests that as a control parameter, time delay may be used as a simple but efficient 'switch' to control motions of a system: either from order motion to chaos or from chaotic motion to order for different applications.
作者 徐鉴 陆启韶
出处 《力学学报》 EI CSCD 北大核心 2003年第4期443-451,共9页 Chinese Journal of Theoretical and Applied Mechanics
基金 国家自然科学基金(10072039)~~
关键词 时滞反馈控制 非线性非自治系统 时滞微分方程 分岔 混沌 动力学 周期解 稳定性 delayed feedback control, nonlinear non-autonomous system, delayed differential equation, bifur-cation, chaos, complexity
  • 相关文献

参考文献18

  • 1徐鉴,陆启韶,王乘.van der Pol-Duffing时滞系统的稳定性和Hopf分岔[J].力学学报,2000,32(1):112-116. 被引量:12
  • 2Pyragas K. Continuous control of chaos by self-controlling feedback. Phys Lett A, 1992, 170:421-428.
  • 3Nakajima H, Ueda Y. Half-period delayed feedback control for dynamical systems with symmetries. Phys Rev E, 1998,58, 1757-1763.
  • 4Pyragas K. Control of chaos via an unstable delayed feedback controller. Phys Rev Lett, 2001, 86:2265-2268.
  • 5Song Y, Yu X, Chen G, et al. Time delayed repetitive learning control for chaotic systems. Int J Bifurcation and Chaos, 2002, 8:1057-1065.
  • 6Just W, Bernard T, Ostheimer M, et al. Mechanism of time-delayed feedback control. Phys Rev Lett, 1997, 78:203-206.
  • 7Just W, Reckwerth D, Moeckel J, et al. Delayed feedback control of periodic orbits in autonomous systems. Phys Rev Lett, 1998, 81:562-565.
  • 8Just W, Reckwerth D, Reibold E, et al. Influence of control loop latency on time-delayed feedback control. Phys Rev E, 1999, 59:2826-2829.
  • 9Just W, Reibold E, Kacperski K, et al. Influence of stable Floquet exponents on time-delayed feedback control. Phys Rev E, 2000, 61:5045-5056.
  • 10Xu J, Lu QS. Hopf bifurcation of time-delay lienaxd equations. Int J Bifurcation and Chaos, 1999, 9:939-951.

二级参考文献2

共引文献11

同被引文献116

引证文献18

二级引证文献169

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部