期刊文献+

凸区域上拟线性椭圆型方程的尖峰解

SPIKE-LAYERED SOLUTIONS OF A QUASILINEAR ELLIPTIC EQUATION ON CONVEX DOMAIN
在线阅读 下载PDF
导出
摘要 本文讨论奇异扰动的拟线性椭圆型方程-εΔ_pu(x)=f(u(x)),u(x)≥0,x∈Ω;u=0,x∈Ω在 Dirichlet边值条件下极小能量解的存在性和结构。其中ε>0是小参数,p>2,Δ_pu=div(|Du|^(p-2)Du),f(s)=s^q-s^(p-1),p-1<q<(Np)/(N-p)-1,Ω R^N(N≥2)是有界光滑区域。当ε→0时,方程存在一个极小能量解,应用移动平面方法可以证明此解在凸区域上会变成一个尖峰解。 In this paper the existence and structure of a least-energy solution are considered for a singularly perturbed quasilinear Dirichlet equation , where with is a small parameter and Ω is a bounded smooth domain in RN (N ≥2). The equation exists a least-energy solution as ε→ 0. Using the moving plane method it can be showed that this least-energy solution develops to a spike-layer solution when Ω is a convex domain.
出处 《数学年刊(A辑)》 CSCD 北大核心 2003年第4期421-432,共12页 Chinese Annals of Mathematics
基金 国家重点学科基础研究基金(No.G1999032801) 国家自然学科基金(No.10001028)
关键词 拟线性椭圆型方程 尖峰解 移动平面方法 Quasilinear elliptic equation, Spike-layer solution, Moving plane method
  • 相关文献

参考文献28

  • 1Lin, C. S., Ni, W. M. & Takagi, I., Large amplitude stationary solutions to a chemotaxis system [J], J. Diff. Eqns., 72(1988), 1-27.
  • 2Wei, J., On the boundary spike layer solutions of singularly perturbed Neumann problem [J], J. Diff. Eqns., 134(1997), 104-133.
  • 3Ambrosetti, A. & Rabinowitz, P. H., Dual variational methods in critical point theory and applications [J], J. Funct. Anal., 14(1973), 349-381.
  • 4Ni, W. M. & Takagi, I., Locating the peaks of least-energy solutions to a semilinear neumann problem [J], Duke Math. J., 70:2(1993), 247-281.
  • 5Ni, W. M. & Takagi, I., On the shape of least-energy solutions to a semilinear Neumann problem [J], Comm. Pure Appl. Math., 44(1991), 819-851.
  • 6Dancer, E. N. & Wei, J., On the profile of solutions with two sharp layers to a singularly perturbed semilinear Dirichlet problem [J], Proc. Royal Soc. Edinburgh, 127A(1997),691-701.
  • 7Jang, J., On spike solutions of singularly perturbed semilinear Dirichlet problem [J], J.Diff. Eqns., 114(1994), 370-395.
  • 8Ni, W. M. & Wei, J., On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems [J], Comm. Pure Appl. Math., 48:7(1995),731-768.
  • 9Dancer, E. N. & Wei, J., On the location of spike of solutions with two sharp layers for a singularly perturbed semilinear Dirichlet problem [J], J. Diff. Eqns., 157(1999),82-101.
  • 10Ren, X. & Wei, J., Counting peaks of solutions to some quasilinear elliptic equations with large exponents [J], J. Diff. Eqns., 117(1995), 28-55.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部