期刊文献+

医学图像配准方法分类及现状 被引量:14

Classification and State of Medical Image Registration Methods
暂未订购
导出
摘要 医学图像配准是医学图像融合的前提,是目前医学图像处理中的热点,具有重要的临床诊断和治疗价值。依据7个标准对医学图像配准方法进行了分类,然后从3个方面综述了目前的一些主要的医学图像配准方法,如矩和主轴法、互信息法和相关法等。由于医学图像配准是一项比较复杂和困难的课题,尽管目前已提出许多算法,但并没有一种配准方法能在各个方面都达到理想要求,因此不得不在精确度、速度、自动化程度等方面加以取舍。随着计算机技术和医学成像技术的发展,医学图像的配准技术也一定会得到快速发展。 Medical image registration, which is the precondition of medical image fusion, is a highlight of present medical image processing, and has important values in clinical diagnosis and treatment. This paper firstly presents a classification of medical image registration methods in terms of seven standards, then summarizes some major registration methods from three aspects, such as moment and principal axes method, mutual information, and correlation method etc. Although there are many algorithms at present, no registration method could come up with ideal requirements in every aspect because of its difficulty and complexity. Consequently registration method has to make its choice between accuracy, velocity, automation extent and other aspects. However, with the development of computer technology and medical imaging, the registration technology of medical image is bound to develop quickly.
出处 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2003年第8期114-118,共5页 Journal of Chongqing University
关键词 图像配准 图像融合 矩和主轴法 互信息 相关法 医学图像 image registration image fusion moment and principal axes method mutual information correlation method
  • 相关文献

参考文献30

二级参考文献46

  • 11,Lisa Gottesfeld Brown. A survey of image registration techni-ques. ACM Computing surveys, 1992,24(4):325~376.
  • 22,Feldmar J, Ayache N J Rigid. Affine and loc ally affineregistration of free-form surfaces. International Journal of Computer Vision, 1996,18(2):99~119.
  • 33,Moshfeghi M, Ranganath S, Nawyn K. T hree-dimensionalelast ic matching of volumes, IEEE Trans. on Image Processing, 1994,3(2):128~138.
  • 44,Kass M, Witkin A, Terzopoulos D. Sna kes:active contourmodels. International Journal of Computer Vision, 1 988,1(4):321~331.
  • 55,Jain A K, Zhong Y, Lakshmanan S. Object matching using deformable templates . IEEE Trans. on Pattern Recognition and Machine Intelligence, 1996,18(3 ):267~278.6,Umeyama S. Least squares estimation of transfor mationparameters between point sets. IEEE PAMI, 1991,13(4):376~380.
  • 67,Bookstein F L. Shape and the information in medical images:a decade of the m orphometric synthesis. Computer Vision and Image Understanding, 1997,66(2):97~11 8.
  • 78,Scott G L, Longuet-Higgins H C. An algorithm for associating the features o f 2 images. Proceedings of the Royal Society of London Series B-Biological, 199 1,244(1309):21~26.
  • 89,Ranade S, Rosenfeld A. Point pattern matching by relaxation. Pattern Recognit ion, 1980,12(4):269~275.
  • 910,Ogawa H. Labeled point pattern matching by fuzzy relaxation. Pattern Rec ognition, 1984,17(5):569~573.
  • 10[1]Maurer CR. Registration of 3-D images using weighted geometrical feature [J], IEEE Trans Med Imag, 1996;15:836-849.

共引文献206

同被引文献108

引证文献14

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部