期刊文献+

脑电信号的高阶奇异谱分析 被引量:6

HIGHER ORDER SINGULAR SPECTRUM ANALYSIS OF EEG
在线阅读 下载PDF
导出
摘要 奇异谱分析是脑电信号分析的一种新方法,脑电信号的奇异谱可以反映脑电的特征,它有助于研究大脑的动力学行为。奇异谱分析方法是基于二阶统计的方法,反映的是信号时间上和空间上的一种线性相关关系。而脑电信号属于非线性信号,其内在的非线性关系很难通过奇异谱得到真实的反映,从而会丢失某些有用的信息。提出一种新的基于高阶统计的脑电奇异谱分析方法,并将其运用于正常脑电和癫痫患者的脑电分析中。大量的实测信号样本仿真实验结果表明,正常脑电和癫痫脑电的奇异谱有明显的不同。此外,基于高阶统计的奇异谱和基于二阶统计的奇异谱相比更能反映出信号的细节。 Singular spectrum analysis (SSA) is a novel way to analyse EEG, which can reflect the features of EEG and is helpful to study the dynamic behavior of human brain. SSA method is based on two order statistic, what the method reflects is the linear correlation on spacetime of signals. EEG is a kind of nonlinear signal, however, the intrinsic nonlinear correlations are difficult to reflect by SSA, so, some useful information will be lost. A novel SSA method is proposed, which is used for analysing EEG of normal subjects and epileptic subjects by a large number samples. The results of computer experiment show that the singular spectra of normal subjects are significantly different from epileptic subjects. More-over, the singular spectra based on higher order statistic is better for reflecting the details about EEG than singular spectra based on two order statistic.
机构地区 厦门大学物理系
出处 《生物物理学报》 CAS CSCD 北大核心 2003年第2期147-150,共4页 Acta Biophysica Sinica
基金 教育部高等学校骨干教师资助计划项目(200065)
关键词 脑电信号 奇异谱分析 高阶统计 累积量 EEG (electroencephalograph) Higher order statistic Cumulant SSA (singular spectrum analysis)
  • 相关文献

参考文献12

  • 1张作生,彭虎,公佩祥.时间序列分维数提取算法的研究[J].中国科学技术大学学报,1997,27(2):220-224. 被引量:8
  • 2刘建成,蔡湛宇.脑电信号(EEG)分析方法的现状与发展[J].中国医学物理学杂志,1998,15(4):252-255. 被引量:15
  • 3宋莹,田心.脑电的非线性动力学高维特性及研究现状与展望[J].国外医学(生物医学工程分册),2000,23(4):198-202. 被引量:13
  • 4孟欣,徐京华,顾凡及.癫痫病人脑电信号的奇异谱[J].生物物理学报,2001,17(1):86-90. 被引量:11
  • 5Palus M. Nonlinearity in normal human EEG: cycles, temporal asymmetry, nonstationarity and randomness, not chaos[J].Biological Cybernetics, 1996,75:389-396.
  • 6Casdagli M, Iasemidis LD, Savit R, et al. Non-lineatity in invasive EEG recordings from patients with temporal lobeepilepsy[J]. Electroencephalogr Clin Neurophysiol, 1997,102:98-105.
  • 7Ortega GJ, Boschi C, Louis E. Detecting determinism in high dimensional chaotic system [J]. Php Rev E, 2001,65:6007-6012.
  • 8Casdagli MC, Iasemidis LD, Sackellares JC, et al. Characterizing nonlinearity in invasive EEG recordings from temporallobe epilepsy[J]. Physica D, 1996,99:381-399.
  • 9Loskutov A, Istomin L Kotlyarov O. Data analysis: generalizations of the local approximation method by singular spectrum analysis[Z], http://arxiv.org/pdf/nlin.CD, 0109022, 2001.
  • 10Broomhead DS, King GP. Extracting qualitative dynamics from experimental data[J]. Physica D, 1986,20:217-236.

二级参考文献2

共引文献33

同被引文献60

引证文献6

二级引证文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部