期刊文献+

一种基于模糊神经网络的自适应模糊辨识方法 被引量:5

An Adaptive Fuzzy Identification Method Based on Fuzzy Neural Network
在线阅读 下载PDF
导出
摘要 基于改进的T-S模型,提出一种自适应模糊神经网络模型(AFNN)。首先,基于模糊竞争学习算法确定系统的模糊空间和模糊规则数,并得出每个样本对每条规则的适用程度。其次,利用卡尔曼滤波算法在线辨识AFNN的后件参数。AFNN具有结构简洁,逼近能力强,能够显著提高辨识精度,并且辨识的模糊模型简单有效。最后,将该AFNN用于非线性系统的模糊辨识,仿真结果验证了该方法的有效性。 In accordance with modified T-S model, this paper proposes an adaptive Fuzzy Neural Network model. First, this network is utilized to determine the fuzzy space structure of system and the number of fuzzy rules based on fuzzy competitive learning algorithm and obtains the fitness degree of every rule relative to every sample. Further, the parameters of AFNN are on-line identified by means of Kalman filtering algorithm. The proposed AFNN has the simple model structure, the ability of universal approaching and improves greatly the precision of identification. The identified fuzzy model has the advantages of simplicity and effectiveness. The AFNN is applied to the fuzzy identification for a nonlinear system and the simulation results demonstrate the effectiveness of the proposed method.
出处 《系统仿真学报》 CAS CSCD 2003年第5期731-734,共4页 Journal of System Simulation
关键词 T—S模型 自适应模糊神经网络 模糊竞争学习 模糊辨识 T-S model adaptive fuzzy neural network fuzzy competitive learning fuzzy identification
  • 相关文献

参考文献8

二级参考文献15

共引文献73

同被引文献23

  • 1卫东,曹广益,朱新坚.基于自适应模糊神经技术的质子交换膜燃料电池建模与控制[J].系统仿真学报,2004,16(5):987-991. 被引量:5
  • 2WASMUS S, KUVER A. Methanol oxidation and direct methanol fuel cells: a selective review[J]. J Electroanal Chem, 1999,461(1-2):14-31.
  • 3REN X, ZELENA Y P, THOMAS S, et al. Recent advances in direct methanol fuel at Los Alamos National Laboratory[J]. J Power Sources,2000, 86:111-116.
  • 4MCNICOL B D, RANDD A J, WILLIAMS K R. Direct methanol-air fuel cells for road transportation[J]. J Power Sources, 1999,83:15-31.
  • 5DOHLE H, DIVISEK J. JUNG R. Process engineering of the direct methanol fuel cell [J]. J Power Sources, 2000 (86):469-477.
  • 6WAND Z H, WANG C Y. Mathematical modeling of liquid-feed direct methanol fuel cells [J]. Journal of The Electrochemical Society,2003,150(4):A 508-A 519.
  • 7ARGYROPOULOS P, SCOTT K, SHUKLA A K, et al. A semiempirical model of the direct methanol fuel cell performance Part Ⅰ.Model development and verification[J]. J Power Sources, 2003,123:190-199.
  • 8SCOTT K, ARGYROPOULOS P, SUNDMACHER K. A model for the liquid feed direct methanol fuel cell [J]. J Electroanaly Chem,1999,477 (2):97-110.
  • 9SCOTT K, TAAMA W M, CRUICKS HANK J. Performance and modeling of a direct methanol fuel cell systems [J]. Power Sources,1997, (65):159-171.
  • 10NARENDRA S K, PARTHASARTHY K. Identification and control of dynamical systems using neural networks [J]. IEEE Trans Neural Networks, 1990, (1): 4-27.

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部