期刊文献+

平面图最小对分问题的一个O(logn)近似算法

An O(logn)-Approximation Algorithm for the Minimum Bisection Problem in Planar Graphs
在线阅读 下载PDF
导出
摘要 研究对象仅限于平面图的最小对分问题 ,研究方法是借鉴U .Feige和R .Krauthgamer的“分解 -组合”思想 ;在算法的设计上有新的较大的改进 。 The research object is limited to the minimum bisection problem in planar graphs. The idea of “decomposition combination” owing to U. Feige and R. Krauthgamer is used for reference. However, there are new preferable improvements in designing the algorithm;also a better approximation ratio, O (log n ), is achieved.
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2003年第1期5-8,共4页 Journal of Shandong University(Natural Science)
关键词 amortized割 对分 分解 标号 组合 amortized cut bisection decomposition labeling combination
  • 相关文献

参考文献6

  • 1T Leighton,S Rao.Multicommodity Max-flow Min-cut Theorerm and Their Uses in Designing Approximation Algorithms[J].J ACM,1999,46(6):787~832.
  • 2U Feige,R Krauthgamer.A Polylogarithmic Approximation of the Minimum Bisection(Extended Abstract)[A].Proceedings of the 41st Annual Symposium on Foundations of Computer Science[C].IEEE 2000,105~115.
  • 3P Klein,S A Plotkin,S Rao.Excluded Minors,Network Decomposition,and Multicommodity Flow[A].In Proceedings of the 25th Annual Symposium on the Theory of Computing.1993,682~690.
  • 4C H Papadimitriou,K Steiglitz.Combinatorial Optimization:Algorithm and Complexity[M].Prenfic-Hall,Inc,Englewood Cliffs,N.J.1982.
  • 5F T Leighton,S Rao.An Approximation Max-now Min-cut Theorem for Uniform Multicommodity Flow Problems with Applications to Approximation Algorithms[A].29th Annual Symposium on Foundations of Computer Science[C].IEEE,1998,422~431.
  • 6U Feige,R Krauthgamer,K Nissim.Approximating the Minimum Bisection Size[A].proceedings of the 32nd Annual ACM Symposium on the Theory of Computing[C].2000,530~536.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部