期刊文献+

支持向量机分类器中几个问题的研究 被引量:33

The Study on Some Problems of Support Vector Classifier
在线阅读 下载PDF
导出
摘要 研究了核参数和误差惩罚参数对支持向量机推广能力的影响方式,指出核参数主要影响数据在特征空间中的分布,误差惩罚参数在特征空间中确定经验风险水平而影响SVM的性能。指出特征空间维数和学习机器复杂度并没有直接关系,讨论了结构风险最小化原则,最后给出了支持向量机和神经网络训练方法的差别和仿真试验结果。 The influences of the kernel parameters and error penalty parameter on support vector machine(SVM)'s generalization ability are studied.The test results show that the kernel parameters mainly affect the distribution of the data in the feature space,and the penalty parameter determines the level of the experimental risk in a given feature space.The results also show that the VC dimension of the feature space has no direct relationship with the complexity of SVM,and then the meaning of the structural risk minimization rule is discussed.At the end,the differences of the training methods between artificial neural network and SVM are described.
出处 《计算机工程与应用》 CSCD 北大核心 2003年第13期36-38,共3页 Computer Engineering and Applications
基金 自然科学基金委员会资助(编号:59990472)
关键词 支持向量机 核参数 结构风险最小化原则 support vector machines,kernel parameters,the structural risk minimization
  • 相关文献

参考文献8

  • 1张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2311
  • 2VAPNIKVN 张学工译.统计学习理论的本质[M].清华大学出版社,2000..
  • 3Scholkopf B,Mika S,Burges C et al.Input space vs.feature space in kernel-based methods [J].IEEE Transactions on Neural Networks, 1999; 10(5) : 1000-1017.
  • 4Duan K,Keerrthi S S,Poo A N.Evaluation of simple performance measures for turning svm hyperparameters [R].Control Division Technical Report CD-01-11 ,Department of Mechanical Engineering,National University of Singapore,2001-09.
  • 5Baudat G,Anouar F,Kemel-based methods and function appreximation[C].In:International Joint Conference on Neural Networks(IJCNN01), 2001 : 1244-1249.
  • 6Downs T,Gates K E,Masters A.Exact Simplification of Support Vector Solutions [J]Journal of Machine Learning Research,2001 ;2:293-297.
  • 7Pontil M,Verri A.Properties of Support Vector Machines[J].Neural Computation, 1997 ; 10: 955-974.
  • 8Navia-Vazquez A,Perez-Cruz F,Artes-Rodriguez A et al.Unbiased support vector classifiers,Neural Networks for Signal Processing XI[C]. In:Proceedings of the 2001 IEEE Signal Processing Society Workshop, 2001 : 183~192.

二级参考文献1

共引文献2345

同被引文献226

引证文献33

二级引证文献293

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部