期刊文献+

基于特征矩阵的决策表约简研究 被引量:24

Feature Reduct of Decision Tables Based on Feature Matrix
原文传递
导出
摘要 决策表属性约简是粗集分析的重要内容 .最优属性约简是 NP困难问题 ,目前出现的启发式算法多是以决策表的核为起点 .但对于大型决策表 ,核一般计算量大 ,影响了整个算法的效率 .为此提出了一种分析决策表的属性约简算法 ,它不仅不依赖于核 ,反而为核提供了一种有效的计算方法 .其次 ,对人们容易忽略的含噪声决策表的属性约简也进行了分析 . Feature reduct of decision tables is important for rough analysis. To consistent decision tables, the minimal reduct has been proved to be NP-hard. Many heuristic algorithms, therefore, have been given but most of them depend on the core of decision tables, which is not easy to get, especially for large-scale decision tables. In this way, there exist some problems such as efficiency and the solution completeness in them. Based on feature matrix put forward for reduct of decision tables, a new method to solve the difficulty is proposed in this paper. The method not only is independent of the core of decision tables, but provides a way-out for it. Also, decision tables containing null values, which are regardless and hard to deal with at present, are analyzed in depth in order to find useful information.
出处 《系统工程理论与实践》 EI CSCD 北大核心 2003年第3期65-69,共5页 Systems Engineering-Theory & Practice
关键词 粗集 属性约简 启发式算法 决策表 空值 rough set feature reduct heuristic algorithm decision table null value
  • 相关文献

参考文献2

二级参考文献6

共引文献97

同被引文献115

引证文献24

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部