期刊文献+

亚纯函数微分多项式f^kQ[f]+P[f]的零点分布 被引量:1

The Distribution of Zeros for Differential Polynomials f^kQ[f] + P[f]
原文传递
导出
摘要 文[4]对简单形式的微分多项式fkf’+a的零点分布进行了讨论,文[1]对一般形式的微分多项式fkQ[f]+P[f]的零点分布进行了讨论.但由于极点给证明带来的困难,这些工作主要是对整函数来做的.本文证明了任一满足δ(∞,f)>k+2ΓQ+3ΓP+2/2k+2ΓQ+1的超越亚纯函数f,微分多项式fkQ[f]+P[f]在不含f,Q[f]极点和P[f]零、极点的可数个圆盘并集之外有无穷多个零点,其中k≥3Γp+2,而ΓQ,ΓP分别是f的微分多项式Q[f],P[f]的权.文[1]和[2,4,6]中的结论是本文结论的特殊情况. The distribution of zeros for differential polynomials fkf'+ a and fkQ[f] + P[f] has been studied in [4] and [1]. There are some difficulties in proving zeros distribution of differential polynomials because of the presence of poles. So the above results are only for entire functions. In this paper, we prove that for a transcendental meromorphic function f and two differential polynomials Q[f], P[f] of f, fkQ[f] + P[f] has infinitely many zeros outside the union of the disce which do not contain the poles of f,Q[f], P[f] and the zeros of P[f]. Where f satisfies δ(∞, f) >and P are weights of Q[f] and P[f]. The result improves that of [1] and [2,4,6].
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2003年第2期237-244,共8页 Acta Mathematica Sinica:Chinese Series
基金 湖南省教育厅基金资助项目
关键词 整函数 亚纯函数 微分多项式 ε集 Entire function Meromorphic function Differential polynomial ε set
  • 相关文献

参考文献11

  • 1Zhan X. P., Exception sets for differential polynomials fkQ[f] + P[f], Science in China, Ser. A, 1993, 12:1233-1244 (in Chinese).
  • 2Lehto O., A Generalization of Picard's Theorem, Ark. Math., 1958, 3: 495-500.
  • 3Hayman W. K., Picard values of meromorphic functions and their derivatives, Ann. of Math., 1959, 70: 9-42.
  • 4Anderson J. M., Baker I. N., Clunie I. G., The distribution of values of certain entire and meromophic function,Math. Z., 1981, 178: 509-525.
  • 5Doeringer W., Exceptional values of differential polynomials, Pacific J. Math., 1982, 98: 55-62.
  • 6Langley J. K., Analogues of picard set for entire function and their derivatives, Contemporary Math., 1983,25: 75-86.
  • 7Yang L., The Value Distribution and Its New Research, Beijing: Science Press, 1982 (in Chinese).
  • 8Ahlfors L. V., Complex Analysis, McGraw-Hill, 1966.
  • 9Hayman W. K., Meromorphic Functions, Oxford, 1964.
  • 10He Y. Z., Xiao X. Z., Finite solutions and single value meromorphic solutions for higher order algebraic differential equations, Science in China, Ser. A, 1983, 5:514-522 (in Chinese).

同被引文献10

  • 1詹小平.微分多项式的Picard集[J].数学学报(中文版),1993,36(6):740-751. 被引量:1
  • 2詹小平.微分多项式f^KQ[f]+P[f]的例外集[J].中国科学(A辑),1993,23(12):1233-1244. 被引量:1
  • 3杨乐.值分布及其新研究[M].北京:科学出版社,1982..
  • 4Nevanlinna R. Zur theorie der meromorphen funktionen [J]. Acta Math, 1925, 46:1-99.
  • 5Lehto O. A generalization of Picard's theorem [J]. Ark Math, 1958, 3:495-500.
  • 6Hayman W K. Picard values of meromorphic functions and their derivatives [J]. Ann Math, 1959, 70:9-42.
  • 7Anderson J M, Baker I N, Clunie I G. The distribution of values of certain entire and meromorphic function [J]. Math Z, 1981, 178:509-525.
  • 8Langley J K. Analogues of Picard set for entire function and their derivatives [J]. Contemporary Math, 1983, 25:75-86.
  • 9Anderson J M, Clunie J. Slowly growing meromorphic functions [J]. Comment Math Helv, 1966, 40:267-280.
  • 10谭卫平,詹小平.亚纯函数微分多项式f^kQ[f]+P[f]的零点分布[J].数学的实践与认识,2009,39(2):149-157. 被引量:3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部