期刊文献+

自适应提升小波变换与图象去噪 被引量:12

ADAPTIVE LIFTING WAVELET TRANSFORM AND IMAGE DENOISE
在线阅读 下载PDF
导出
摘要 引入了基于提升法的自适应离散小波变换 ,根据LMS自适应法确定伯恩斯坦预测算子的权重系数 ,使其自适应匹配特定的数据序列 ,而且应用该方法结合软域值可实现信号去噪 ,最后扩展该方法应用于二维图象的去噪 ,数值实验表明自适应提升小波变换有效地实现了图象的去噪而且保持了图像的边缘和纹理特性 。 Adaptive discrete wavelet transform based on the lifting scheme was introduced. The weighed coefficient of Bernstein filter predictor was determined to match adaptively with a desired signal by LMS criteria. The algorithm can be applied to signal denoise by the soft threshold of wavelet. Finally this method was extended to denosing of two dimension images. The numerical experiment shows that the method is a powerful method for denoising image. It can keep the character of edge and texture of the image. The advantages of lifting scheme Lie in its flexible design and simple comput.
出处 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2002年第6期447-450,共4页 Journal of Infrared and Millimeter Waves
基金 国家 8 63高科技 (批准号 92 2 1-0 1)资助项目~~
关键词 小波变换 提升法 图象去噪 自适应 图像处理 LMS 伯恩斯坦滤波器预测算子 wavelet transform lifting scheme image denoise adaptive image processing
  • 相关文献

参考文献6

  • 1Sweldens W. The lifting scheme: A custom-design construction of biothogonal wavelets. Journal of Applied and Comput. Harmonic Analysis, 1996, 3(2): 186 - 200
  • 2Swelden W . The lifting scheme: A construction of second generation wavelet. SIAM J.Math.Anal., 1998, 29: 511 - 546
  • 3Claypoole R L, Baraniukm R G, Nowark R D. Adaptive wavelet transform via lifting scheme. Proc.IEEE Conf.On Acoustics, Speech and Signal Processing, 1999
  • 4Stepien J, Zielinski T, Rumian R. Image Denoising for Adaptive lifting Scheme. Proc. European Signal Processing Conference EUSIPCO-2000, Finland: Tampere, 2000
  • 5Ho W J, Chang W T. Adaptive predictor based on maximally flat halfband filter in lifting scheme . IEEE Tansactions on Signal Processing, 1999, 47(11): 2965 - 2977
  • 6Donoho D L. De-noising by soft thresholding. IEEE Transactions on Information Theory, 1995, 41(3): 613 - 627

同被引文献105

引证文献12

二级引证文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部