期刊文献+

一种用于强噪声环境下语音识别的含噪Lombard及Loud语音补偿方法 被引量:2

A noisy Lombard and Loud speech compensation approach for speech recognition in extremely adverse environment
原文传递
导出
摘要 针对语音识别中由于强噪声的影响而引起的Lombard和Loud效应进行研究,提出了基于训练数据的加性噪声和Lombard及Loud效应的联合补偿法。对于加性噪声是从谱减法的逆向角度对训练数据在频谱域采用谱加法;对于Lombard和Loud语音,则采用基于隐马尔可夫模型(HMM)状态标注的训练数据补偿,该方法同时考虑Lombard和Loud语音不同声学单元的不同状态在倒谱域的多种变化和多种变异情况下不同声学单元的音长及相对音长的变化。这种基于数据的多模式补偿使模型自动适应多种噪声和语音变异情况,在强噪声环境下具有很强的鲁棒性,并且不影响识别系统在正常环境或正常发音时的识别性能.同时,由于补偿是在训练过程中得到,不增加识别时的计算复杂度。 This paper proposes a unified approach for the noisy Lombard and Loud speech recognition based on training data compensation. A spectral addition to the training data is applied to the additive noise which is derived from the reversed point of spectral subtraction, while the compensation in Mel frequency cepstrum (MFC) domain for the Lombard and loud speech is based on HMM state labeling of the training data which take jointly the Mel frequency cepstrum coefficient (MFCC) variance and duration of different states in different acoustic units into account. The new approach is of great robustness in extremely noise and does not worsen the performance under normal environment and normal style. Meanwhile, since the compensation is made in the training phase, it does not increase the complexity of recognition.
作者 田斌 易克初
出处 《声学学报》 EI CSCD 北大核心 2003年第1期28-32,共5页 Acta Acustica
基金 国家自然科学基金资助项目(69872027)
  • 相关文献

参考文献16

  • 1Palival K K. Neural net classifiers for robust speech recognition under noise environments. Proceedings of ICASSP 90, 1990:429-432.
  • 2Boll S. Suppression of acoustic noise in speech using spectral subtraction. IEEE Transactions on Acoustics, Speech and Signal Processing, 1979;27(2):113-120.
  • 3Compernole D Van. Increased noise immunity in large vocabulary speech recognition with the aid of spetral subtraction. Proceedings of ICASSP 87, 1987:1143-1146.
  • 4Rajasekaran P, Doddington G, Picone J. Recognition of speech under stress and in noise. Proceedings of ICASSP 86, 1986:733-736.
  • 5Mokbel, Chafic E, Chollet, Gerard G. Automatic word recognition in cars. IEEE Transactions on Speech and Audio Processing, 1995;3(5):346-356.
  • 6Milner B P, Vaseghi. Comparison of some noisecompensation methods for speech recognition in adverse environments. IEE Proceedings: Vision, Image and Signal Processing, 1994;141(5):280-288.
  • 7Applebaum T H, Hanson. Robust speaker-independent word recognition using spectral smoothing and temporal derivatives. EUSIPCO 90, 1990:1183-1186.
  • 8Anglade Y, Junqua. Acoustic-phonetic study of Lombard speech in the case of isolated-words. EUSIPCO 90, 1990:1195-1198.
  • 9Stanton B J, Jamieson L H. Robust recognition of Loud and lombard speech in the fighter cockpit environment. Proceedings of ICASSP 88, 1988:675-678.
  • 10Rabiner L R. A tutorial on hidden Markov models and selected applications in speech recognition. Proceeding of the IEEE, 1989;77(2/3):257-285.

同被引文献17

  • 1张家騄.超音段特征间的相互作用[J].声学学报,1993,18(4):263-271. 被引量:3
  • 2张家騄.元音的内在基频与讲话方式对共振峰的影响[J].声学学报,1989,14(6):401-406. 被引量:6
  • 3Ghazale S E, Hansen J H L. A comparative study of traditional and newly proposed feature for recognition of speech under stress. IEEE Transaction on Speech and Audio Processing, 2000; 8(4): 429-442.
  • 4Hansen J H L. Morphological constrained feature enhancement with adaptive cepstral compensation (mce-acc) for speech recognition in noise and lombard effect. IEEE Transaction on Speech and Audio Processing, 1994; 2(4):598-614.
  • 5Hansen J H L. Analysis and compensation of speech under stress and noise for environment robustness in speech recognition. Speech Communication, 1996; 20(1/2): 151-173.
  • 6Lippmann R P, Martin E A, Paul D B. Multi-Style training for robust isolated-word speech recognition. ICASSP'87,USA, 1987:705-708.
  • 7Womack B D, Hansen J H L. N-channel hidden Markov models for combined stressed speech classification and recognition. IEEE Transaction on Speech and Audio Processing, 1999; 7(6): 668-677.
  • 8Hansen J H L, Womack B D. Feature analysis and neutral network-based classification of speech under stress. IEEE Transaction on Speech and Audio Processing, 1996; 4(4):307-313.
  • 9Chen Y. Cepstral domain talker stress compensation for robust speech recognition. IEEE Transaction on Acoustics,Speech and Signal Processing, 1988; 36(4): 433-439.
  • 10Leggetter C J. Improved acoustic modeling for hmms using linear transformation [PhD thesis]. Cambridge University,1995.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部