期刊文献+

Density Power Divergence Estimator for General Integer-Valued Time Series with Exogenous Covariates

原文传递
导出
摘要 In this article,we study a robust estimation method for a general class of integervalued time series models.The conditional distribution of the process belongs to a broad class of distributions and unlike the classical autoregressive framework,the conditional mean of the process also depends on some exogenous covariates.We derive a robust inference procedure based on the minimum density power divergence.Under certain regularity conditions,we establish that the proposed estimator is consistent and asymptotically normal.In the case where the conditional distribution belongs to the exponential family,we provide sufficient conditions for the existence of a stationary and ergodicτ-weakly dependent solution.Simulation experiments are conducted to illustrate the empirical performances of the estimator.An application to the number of transactions per minute for the stock Ericsson B is also provided.
机构地区 THEMA
出处 《Communications in Mathematics and Statistics》 2025年第5期1075-1115,共41页 数学与统计通讯(英文)
基金 supported by the MME-DII center of excellence(ANR-11-LABEX-0023-01) the ANR BREAKRISK:ANR-17-CE26-0001-01 the CY Initiative of Excellence(grant“Investissements d’Avenir”ANR-16-IDEX-0008) Project“EcoDep”PSI-AAP2020-0000000013.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部