期刊文献+

基于动态基准线预测模型的公共建筑空调负荷分解方法

Air conditioning load decomposition method for public buildings based on dynamic baseline prediction model
在线阅读 下载PDF
导出
摘要 针对公共建筑现有空调负荷分解方法误差较大的问题,在总负荷季节性作差分解空调负荷的传统方法的基础上,提出了基于动态基准线预测模型的分解方法。首先,提出了基于改进K-Medoids模型的基准日划分方法,通过疏离系数修正K-Medoids聚类结果,准确划分季节交替期的空调日和基准日,为动态基准线预测提供准确的标签数据。其次,构建了基于两阶段注意力机制-长短期记忆(dual-stage attention mechanismlong short-term memory,DAM-LSTM)的动态基准线预测模型,引入两阶段注意力机制(dual-stage attention mechanism,DAM)优化配置长短期记忆(long short-term memory,LSTM)网络,通过特征注意力机制提升对关键特征的侧重、时序注意力机制强化对时序信息的筛选,为空调负荷分解提供准确的基准负荷曲线。最后,以镇江某办公建筑和商业建筑为例进行实验,结果表明该方法显著提升了空调负荷分解精度和鲁棒性,尤其对小样本算例和尖峰负荷预测等难点优势明显。 To address the issue of large errors in existing air-conditioning load decomposition methods for public buildings,this paper proposes a decomposition method based on a dynamic baseline prediction model,building upon the traditional seasonal difference approach using total load.Firstly,an improved K-Medoids-based baseline day classification method is introduced.By incorporating a separation coefficient to refine clustering results,the method accurately distinguishes air-conditioning days and baseline days during seasonal transition periods,providing reliable labeled data for dynamic baseline prediction.Secondly,a dynamic baseline prediction model based on DAM-LSTM is constructed,where a dual-stage attention mechanism(DAM)is integrated to optimize the long short-term memory(LSTM)network.The feature attention mechanism enhances the model’s focus on key features,while the temporal attention mechanism strengthens its ability to filter temporal information,thereby improving the accuracy of baseline load curve prediction for air-conditioning load decomposition.Finally,experiments conducted on a government office building and a commercial building in Zhenjiang demonstrate that the proposed method significantly improves both the accuracy and robustness of air-conditioning load decomposition,showing particular advantages in small-sample scenarios and peak load prediction tasks.
作者 胡涵天 黄莉 周赣 张娅楠 季晓明 王雨薇 HU Hantian;HUANG Li;ZHOU Gan;ZHANG Yanan;JI Xiaoming;WANG Yuwei(Southeast University,Nanjing 210096,China;State Grid Jiangsu Electric Power Company,Nanjing 210000,China;State Grid Zhenjiang Power Supply Company of Jiangsu Electric Power Company,Zhenjiang 212000,China)
出处 《供用电》 北大核心 2026年第1期89-101,共13页 Distribution & Utilization
基金 国家电网有限公司科技项目“基于关口量测的典型公共建筑空调负荷分解及节电潜力评估技术研究与应用”(5400-202318574A-3-2-ZN)。
关键词 空调负荷分解 动态基准线预测 两阶段注意力机制 长短期记忆 改进K-Medoids air conditioning load decomposition dynamic baseline prediction dual-stage attention mechanism long short-term
  • 相关文献

参考文献19

二级参考文献219

共引文献264

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部