期刊文献+

融合情感知识的虚假新闻检测

Fake News Detection with Integrated Emotional Knowledge
在线阅读 下载PDF
导出
摘要 情感在虚假新闻检测中起着重要作用。现有工作侧重于从语言学角度挖掘情感特征,忽视了从心理学角度挖掘情感特征,导致不能挖掘情感之间的关联信息;此外,现有工作忽略了情感特征与文本特征之间的联系,导致不能充分挖掘新闻潜在语义关系。为解决上述问题,本文提出一种融合心理学情感知识的虚假新闻检测模型(FNEK),旨在将Plutchik情感轮心理学模型引入虚假新闻检测领域,利用其提取情感特征,同时通过局部和全局视角提取文本特征,并与情感特征融合进行虚假新闻检测,以提高虚假新闻检测模型的准确性和可靠性。在公开的Politifact、Weibo16和Weibo20数据集上的实验结果表明,本文模型与当前先进模型相比,在准确率上分别提高2.1、0.7和2.5个百分点。 Emotion plays a significant role in fake news detection.Existing research mainly focuses on extracting emotional features from a linguistic perspective,which fails to explore the relationships between emotions from a psychological perspective.In addition,the connection between sentiment features and text features is ignored by existing work,and the potential semantic information of news can not be explored fully.To address the above issues,a fake news detection mode(FNEK)is proposed by this paper,which integrates psychological and emotional knowledge.The Plutchik’s wheel of emotions theory from psychology is incorporated by the model to extract emotional features,and the emotional features are combined with textual features from local and global perspectives,which enhances the accuracy and reliability of fake news detection.Experimental results on publicly available Politifact,Weibo16,and Weibo20 datasets show that the proposed model improves accuracy by 2.1,0.7 and 2.5 percentage points,respectively,compared with state-of-the-art baseline models.
作者 黄琪 李必镡 王明文 肖聪 刘璟 罗文兵 HUANG Qi;LI Bixin;WANG Mingwen;XIAO Cong;LIU Jing;LOU Wenbing(School of Computer and Information Engineering,Jiangxi Normal University,Nanchang Jiangxi 330022,China)
出处 《广西师范大学学报(自然科学版)》 北大核心 2026年第1期80-90,共11页 Journal of Guangxi Normal University:Natural Science Edition
基金 国家自然科学基金(62466028,62266023) 江西省自然科学基金(20242BAB20045) 江西省教育厅科学技术研究项目(GJJ2200354)。
关键词 虚假新闻检测 语言学 心理学 情感知识 Plutchik情感轮 fake news detection linguistic perspective psychological perspective emotional knowledge Plutchik’s wheel of emotions
  • 相关文献

参考文献12

二级参考文献57

  • 1奥尔波特.谣言心理学[M].沈阳:辽宁教育出版社,2003.
  • 2卡普费雷.谣言:世界最古老的传媒[M].郑若麟,译.上海:上海人民出版社,2008.
  • 3拉扎斯菲尔德.人民的选择[M].唐茜,译.北京:中国人民大学出版社,2012:139-150.
  • 4CNNIC.中国互联网络发展状况统计报告(2015年1月)[R].北京:中国互联网信息中心,2015.
  • 5Qazvinian V, Rosengren E, Radev D R, et al. Rumor has it: identi- fying misinformation in microblogs [ C ]//Proc of Conference on Em- pirical Methods in Natural Language Processing. [ S. t. ] : Association for Computational Linguistics, 2011: 1589-1599.
  • 6Castillo C, Mendoza M, Poblete B. Information credibility on twitter [ C]//Proc of the 20th International Conference on World Wide Web. New York:ACM Press, 2011: 675-684.
  • 7Takahashi T, Igata N. Rumor detection on twitter [ C ]//Proc of the 13th Intet~aational Symposium on Advanced Intelligent Systems, and the Joint 6th International Conference on Soft Computing and Intelli- gent Systems. [ S. 1. ] :IEEE Press, 2012: 452-457.
  • 8Yang Fan, Liu Yang, Yu Xiaohui, et al. Automatic detection of ru- mor on Sina Weibo[ C]//Proc of ACM SIGKDD Workshop on Mining Data Semantics. New York:ACM Press, 2012: 13.
  • 9Sun Shengyun, Liu Hongyan, He Jun, et al. Detecting event rumors on Sina Weibo automatically [ M ]//Web Technologies and Applica- tions. Berlin:Springer, 2013.. 120-131.
  • 10Mikolov T, Chen Kai, Con'ado G, et al. Efficient estimation of word representations in vector space [ C ]//Proc of International Conference on Learning Representations. 2013.

共引文献132

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部