期刊文献+

基于改进Mask RCNN的石油钻机焊缝识别方法

Weld Seam Recognition Method of Oil Drilling Rigs Based on Improved Mask RCNN
在线阅读 下载PDF
导出
摘要 为了提高石油钻机焊缝识别的精度,提出一种基于改进Mask基于区域的卷积神经网络(RCNN)的识别方法。以Mask RCNN为基础,改进Mask RCNN的特征网络,并引入卷积块注意力模块(CBAM)注意力机制进行权重灵活分配,构建改进Mask RCNN的石油钻机焊缝识别结构,实现对石油钻机焊缝的识别。结果表明,所提出的方法可实现不同类型的石油钻机焊缝识别,且识别准确率、精确率、交并比分别为91.94%、92.44%、91.87%。由此得出,所提出的方法可提高对石油钻机焊缝的识别精度,实现钻机焊缝的无损检测。 To improve the weld seam recognition precision of oil drilling rigs,a recognition method based on improved Mask region-based convolutional neural network(RCNN)is proposed.Based on Mask RCNN,the feature network of Mask RCNN is improved,convolutional block attention module(CBAM)attention mechanism is introduced for flexible weight allocation,and weld seam recognition structure of oil drilling rigs based on improved Mask RCNN is constructed to realize the recognition of weld seam of oil drilling rigs.The results show that the proposed method can achieve the recognition of different types of weld seam of oil drilling rigs,and its recognition accuracy,precision and intersection over union are 91.94%,92.44%and 91.87%,respectively.It is concluded that the proposed method can improve the recognition precision of weld seam of oil drilling rigs and realize the non-destructive testing of drilling rigs.
作者 沈学峰 徐晓磊 SHEN Xuefeng;XU Xiaolei(Liupu Drilling Branch of Sinopec East China Petroleum Engineering Co.,Ltd.,Zhenjiang 212003,China;RG Petro-machinery Group Co.,Ltd.,Nanyang 473006,China)
出处 《微型电脑应用》 2025年第12期200-203,共4页 Microcomputer Applications
关键词 无损检测 石油钻机 焊缝识别 Mask RCNN 注意力机制 non-destructive testing oil drilling rigs weld seam recognition Mask RCNN attention mechanism
  • 相关文献

参考文献10

二级参考文献83

共引文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部