摘要
This paper mainly studies the following Monge-Ampère type systems{det^(1/n)(ΔuI-D^(2)u)=p(|x|)f(v),x∈R^(n),det^(1/n)(ΔvI-D^(2)v)=q(|x|)g(u),x∈R^(n).The existence of entire radial solutions is obtained by using monotone iteration method and Arzelà-Ascoli theorem.These results generalize the classical Keller-Osserman condition to fully nonlinear systems.
本文主要研究了下面的Monge-Ampère型方程组:{det^(1/n)(ΔuI-D^(2)u)=p(|x|)f(v),x∈R^(n),det^(1/n)(ΔvI-D^(2)v)=q(|x|)g(u),x∈R^(n)利用单调迭代法和Arzelà-Ascoli定理,得到了整体镜像对称解的存在性。这些结果把经典的Keller-Osserman条件推广到了完全非线性方程组中。