期刊文献+

融合形状感知的跨模态域自适应分割模型

Shape-aware cross-modal domain adaptive segmentation model
原文传递
导出
摘要 跨模态无监督域自适应(UDA)方法旨在将训练于源模态上的分割模型有效迁移至无标注的目标模态。然而,现有方法未能充分利用图像中的形状信息和中间层特征,导致模型在跨模态迁移任务中的泛化能力受限。为此,本文提出了一种基于形状感知的自适应加权分割(SAWS)模型,以增强模型对目标区域的感知能力和对全局与局部信息的捕获能力。首先,本文提出多角度条带形状感知(MSSP)模块,通过多角度池化策略在不同角度提取形状特征,从而提高跨模态场景下对目标结构的建模能力;其次,引入自适应加权分层对比(AWHC)损失,以充分挖掘中间层特征信息,提升模型在小目标结构上的分割精度;最后,利用多模态全心脏分割(MMWHS)数据集验证该算法的有效性。实验结果表明,在跨模态心脏分割任务中,该算法在计算机断层扫描(CT)→磁共振图像(MRI)任务下的骰子系数(Dice)为70.1%,平均对称表面距离(ASSD)为4.0;在MRI→CT任务下,Dice为83.8%,ASSD为3.7,均优于主流算法。本研究提出了一种融合形状感知的跨模态医学影像分割方法,有效提升了UDA模型的结构感知能力与泛化性能。 Cross-modal unsupervised domain adaptation(UDA)aims to transfer segmentation models trained on a labeled source modality to an unlabeled target modality.However,existing methods often fail to fully exploit shape priors and intermediate feature representations,resulting in limited generalization ability of the model in cross-modal transfer tasks.To address this challenge,we propose a segmentation model based on shape-aware adaptive weighting(SAWS)that enhance the model's ability to perceive the target area and capture global and local information.Specifically,we design a multi-angle strip-shaped shape perception(MSSP)module that captures shape features from multiple orientations through an angular pooling strategy,improving structural modeling under cross-modal settings.In addition,an adaptive weighted hierarchical contrastive(AWHC)loss is introduced to fully leverage intermediate features and enhance segmentation accuracy for small target structures.The proposed method is evaluated on the multi-modality whole heart segmentation(MMWHS)dataset.Experimental results demonstrate that SAWS achieves superior performance in cross-modal cardiac segmentation tasks,with a Dice score(Dice)of 70.1%and an average symmetric surface distance(ASSD)of 4.0 for the computed tomography(CT)→magnetic resonance imaging(MRI)task,and a Dice of 83.8%and ASSD of 3.7 for the MRI→CT task,outperforming existing state-of-the-art methods.Overall,this study proposes a cross-modal medical image segmentation method with shape-aware,which effectively improves the structure=aware ability and generalization performance of the UDA model.
作者 刘禹思 齐良策 刁兆恒 冯冠元 李玉琴 蒋振刚 LIU Yusi;QI Liangce;DIAO Zhaoheng;FENG Guanyuan;LI Yuqin;JIANG Zhengang(School of Computer Science and Technology,Changchun University of Science and Technology,Changchun 130022,P.R.China;Key Laboratory of Medical Imaging Intelligence Technology of Jilin Province,Changchun University of Science and Technology,Changchun 130022,P.R.China;Jilin Cross-regional Science and Technology Innovation Center of Medical Intelligent Technology and precision Diagnosis and Treatment Equipment,Changchun University of Science and Technology,Changchun 130022,P.R.China)
出处 《生物医学工程学杂志》 北大核心 2025年第6期1216-1225,共10页 Journal of Biomedical Engineering
基金 国家自然科学基金资助项目(82472118) 吉林省高教学会高教科研课题(JGJX24D0119)。
关键词 域自适应 跨模态 语义分割 自适应 形状感知 Domain adaptation Cross modal Semantic segmentation Self-adaptation Shape perception
  • 相关文献

参考文献4

二级参考文献10

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部