期刊文献+

Co-maximal Subgroup Graphs of Finite Groups

原文传递
导出
摘要 For a finite group G,the co-maximal subgroup graphΓ(G)of G is a graph whose vertices are proper subgroups of G,and two distinct vertices H and K are adjacent if and only if H K=G.The deleted co-maximal subgroup graphΓ^(∗)(G)is obtained by removing isolated vertices fromΓ(G).Firstly,we provide necessary and sufficient conditions forΓ^(∗)(G)to be connected;in particular,from the viewpoint of normal subgroups in G,we give some sufficient conditions forΓ^(∗)(G)to be connected.Secondly,for a finite abelian group G we prove that the diameter ofΓ^(∗)(G),diam(Γ^(∗)(G)),is at most 3.Also,we characterize G with diam(Γ^(∗)(G))=i for i=1,2,3 and we give characterizations for G withΓ^(∗)(G)being complete bipartite graphs and null graphs separately.Finally,we show that for the semidirect product G of two finite cyclic groups,Γ^(∗)(G)is connected and diam(Γ^(∗)(G))=2.
出处 《Algebra Colloquium》 2025年第3期511-526,共16页 代数集刊(英文版)
基金 supported by National Natural Science Foundation of China(Grant Nos.12071194,12361072) 2023 Xinjiang Uygur Autonomous Region Natural Science Foundation General Project(No.2023D01A36) 2023 Xinjiang Uygur Autonomous Region Natural Science Foundation for Youths(No.2023D01B48).
  • 相关文献

参考文献1

二级参考文献1

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部