期刊文献+

风电场双重预控系统的边缘智能应用与优化

The Application and Optimization of Edge Intelligence in the Dual Pre-control System of Wind Farms
在线阅读 下载PDF
导出
摘要 研究提出基于边缘智能计算的风电场双重预控与风险预警方法,通过构建分层系统架构整合边缘节点实时处理与云端协同决策。技术预控使设备故障预测准确率达到89.7%,管理预控使运维成本大幅降低;风险预警模型预测准确度达92.3%,响应时间缩短至1.2 s。实证表明,该方法降低了85.2%故障发生率,在极端天气事件中成功避免了重大设备损失,为风电场安全高效运行提供了有效支撑。 The study proposes a dual pre-control and risk warning method for wind farm power stations based on edge intelligent computing,integrating real-time processing at edge nodes and collaborative decision-making in the cloud through a hierarchical system architecture.Technical pre-control achieves an equipment failure prediction accuracy of 89.7%,while management pre-control significantly reduces operational costs.The risk warning model attains a prediction accuracy of 92.3%,with response time shortened to 1.2 seconds.Empirical results demonstrate that this method reduces fault occurrence by 85.2%,successfully prevents major equipment losses during extreme weather events,and provides effective support for the safe and efficient operation of wind farms.
作者 赵晓卫 ZHAO Xiaowei
出处 《电力系统装备》 2025年第12期153-155,共3页 Electric Power System Equipment
关键词 边缘智能计算 风电场 双重预控 风险预警 故障预测 edge intelligence wind farm dual pre-control risk early warning fault prediction
  • 相关文献

参考文献5

二级参考文献44

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部