摘要
高速磁浮列车作为新兴的交通运输工具,凭借着更高车速的优势有效填补了铁路与航空之间的速度空白,但列车高速运行时严重加剧了车隧耦合空气动力效应,尤其是隧道入口产生的高幅值、大梯度初始波前极易发生激化,进而在隧道出口产生显著的微气压波。隧道入口修建缓冲结构是常见的微气压波抑制方法,但缓冲结构通常需随车速的增加而延长,且因其无法直接作用于波前演化而在长大隧道中抑制效果减弱。针对此类问题,采用三维、SST k-ω雷诺时均方程和重叠网格方法,研究600 km/h磁浮列车通过横截面积为92 m2的单线隧道时壁面的瞬变压力和初始波前特征;在此基础上使用一维特征线数值方法研究了分布式气室阵列关键特征参数对初始压缩波演化的影响。研究结果表明:磁浮列车高速驶入隧道时,隧道内压缩波与膨胀波传播反射形成正/负压交替现象,初始压缩波在隧道入口附近形成,距入口100 m后逐渐趋于稳定。隧道内设置气室阵列可有效抑制波前陡化,当气室体积比VR(气室体积与隧道空间之比)提升至0.1时,结合优化的连接阻力(如K_(1)=1000 s^(-1)),波前最大梯度可控制在20 kPa/s以下。气室阻尼系数ζ降低可能诱发波前振荡并影响气室缓解性能,未来需深入解析气室连接处惯性-阻力耦合机制对压力梯度演化的动态调控机理。研究成果可为高速磁浮隧道波前激化抑制及微气压波气室阵列控制技术提供理论依据和技术参考。
As an emerging transportation tool,high-speed maglev trains effectively fill the speed gap between railways and aviation with the advantage of higher speeds.However,the high-speed operation of trains severely exacerbates the vehicle-tunnel coupling aerodynamic effects,especially the high amplitude and large gradient initial wavefront generated at the tunnel entrance,which is prone to intensification,resulting in significant micro pressure waves at the tunnel exit.The construction of a buffer structure at the entrance of a tunnel is a common method for suppressing micro pressure waves,but the buffer structure usually needs to be extended with the increase of train speed,and its effectiveness diminishes in long tunnels because it cannot directly act on the evolution of the wave front.To address such issues,three-dimensional,SST k-ω Reynolds time averaged equations and overlapping grid methods were used to study the transient pressure and initial wavefront characteristics of the wall when a 600 km/h maglev train passes through a single track tunnel with a crosssectional area of 92 m2.Based on this,one-dimensional characteristic line numerical methods were used to investigate the influence of key characteristic parameters of the distributed chamber array on the evolution of the initial compression wave.The research results show that when maglev trains enter tunnels at high speed,the propagation and reflection of compression waves and expansion waves inside the tunnel form a positive/negative pressure alternating phenomenon.The initial compression wave is formed near the entrance of the tunnel and gradually stabilizes after being 100 meters away from the entrance.The installation of air chamber arrays inside the tunnel can effectively suppress wavefront steepening.When the air chamber volume ratio VR(the ratio of chamber volume to tunnel space)is increased to 0.1,combined with optimized connection resistance(such as K_(1)=1000 s^(-1)),the maximum wavefront gradient can be controlled below 20 kPa/s.The decrease in the damping coefficient ζ of the air chamber may induce wavefront oscillation and affect the relief performance of the air chamber.In the future,it is necessary to further analyze the dynamic control mechanism of the inertia resistance coupling mechanism at the connection of the air chamber on the evolution of pressure gradient.This study can provide theoretical basis and technical reference for wavefront excitation suppression and micro pressure wave chamber array control technology in high-speed maglev tunnels.
作者
陈大伟
姚拴宝
马健斌
马伟斌
周伟
杨斯涵
刘峰
CHEN Dawei;YAO Shuanbao;MA Jianbin;MA Weibin;ZHOU Wei;YANG Sihan;LIU Feng(State Key Laboratory of High-speed Maglev Transportation Technology,Qingdao 266111,China;CRRC Qingdao Sifang Co.,Ltd.,Qingdao 266111,China;School of Mechanical Engineering,Taiyuan University of Technology,Taiyuan 030024,China;Railway Engineering Research Institute,China Academy of Railway Sciences,Beijing 100081,China;School of Traffic and Transportation Engineering,Central South University,Changsha 410075,China)
出处
《铁道科学与工程学报》
北大核心
2025年第12期5255-5266,共12页
Journal of Railway Science and Engineering
基金
国家自然科学基金青年基金资助项目(52002265)
山西省基础研究计划资助项目(202403021221051)
高速磁浮运载技术全国重点实验室开放基金项目资助(SKLM-SFCF-2023-006)
中国博士后科学基金资助项目(2022M712930)
山西省省筹资金资助回国留学人员科研项目(2023-056)。
关键词
气室阵列
数值模拟
磁浮列车
初始波前
微气压波
air chamber array
numerical simulation
maglev train
initial wavefront
micro-pressure wave