摘要
质子交换膜水电解槽以电能为驱动力实现水分解成氧气和氢气。在水电解的过程中,阳极催化层是影响电解槽性能的核心部件之一,离聚物是催化层的重要成分,建立考虑离聚物吸水膨胀特性的一维电解槽模型,通过当量质量来修正离聚物的质子电导率,采用收缩电阻理论计算不同离聚物含量时的界面接触电阻,以长链和短链6种不同当量质量的离聚物为研究对象,分析其对电解槽性能的影响。研究发现,由于催化层中过多的离聚物会覆盖催化剂的活性位点,阳极催化层中的离聚物含量存在最优值。在使用不同类型的离聚物时,由于吸水性不同,最优离聚物含量不同,与离聚物吸水膨胀后催化层的孔隙率相关。据此,提出了最优孔隙率相关公式。此外,短链离聚物的性能在吸水膨胀前后的始终强于长链离聚物,证明了短链离聚物的优势。研究能够为质子交换膜水电解槽催化层的优化设计提供参考依据。
Proton exchange membrane water electrolyzer decomposes water into oxygen and hydrogen using electrical energy as the driving force.During the water electrolysis process,the anode catalyst layer is a key factor influencing the performance of the electrolyzer.Based on the initial structural parameters of the proton exchange membrane water electrolyzer,this study establishes a one-dimensional electrolysis model to investigate the effect of ionomers in the anode catalyst layer on the operational performance of electrolyzer.Six ionomers with different equivalent weights,including both long-chain and short-chain types,were compared.Proton conductivity of ionomers was corrected based on their equivalent weights,and interfacial contact resistance at different ionomer contents was calculated using the constriction resistance theory.Since excessive ionomer in the catalyst layer can cover the active sites of catalyst,there exists an optimal ionomer content in the anode catalyst layer.When using different types of ionomers,the optimal ionomer content varies due to differences in water absorption,which is related to the porosity of the catalyst layer after ionomer water absorption and swelling.Based on this,a formula related to the optimal porosity is proposed in this paper.Furthermore,the performance of short-chain ionomer consistently outperforms that of long-chain ionomer both before and after water absorption and swelling,which demonstrates the advantages of short-chain ionomers.This study can provide references for the optimal design of catalyst layer in proton exchange membrane water electrolyzer.
作者
张剑飞
徐勇
屈治国
ZHANG Jianfei;XU Yong;QU Zhiguo(MOE Key Laboratory of Thermo-Fluid Science and Engineering,School of Energy and Power Engineering,Xi'an Jiaotong University,Xi'an 710049,China)
出处
《西北大学学报(自然科学版)》
北大核心
2025年第6期1285-1296,共12页
Journal of Northwest University(Natural Science Edition)
基金
国家自然科学基金“叶企孙”科学基金(U2441281)
陕西省重点研发计划(2024CY2-GJHX-88)
陕西省创新人才推进计划-科技创新团队(2024RS-CXTD-35)。
关键词
电解水
质子交换膜水电解槽
阳极催化层
离聚物膨胀
electrolysis of water
proton exchange membrane water electrolyzer
anode catalytic layer
ionomer swelling