摘要
In permanent magnet synchronous machine(PMSM) drives, temperature information is critical to achieve reliable and high-performance control. The popular model-based estimation methods are based on extracting temperature dependent terms from the voltages using the machine model. The estimation accuracy under low speed or load can be greatly affected by the model uncertainty and noise due to low signal-tonoise ratio. This paper presents a high frequency(HF) position offset injection-based winding and permanent magnet(PM) temperature decoupled estimation approach for PMSMs to achieve accurate and robust temperature estimation among a wide speed range especially under low-speed conditions. In the proposed approach, a small HF position offset is injected into the machine to construct a decoupled winding and PM temperature estimation model, in which the winding and PM temperatures are independently estimated from HF excitations. The temperature estimation is independent from the fundamental model and parameter variation, and it achieves high signal-tonoise ratio under low-speed conditions. Moreover, the temperature estimation is also not affected by magnetic saturation and inverter distortion, which can improve the accuracy and robustness of temperature estimation. The proposed approach is validated with experiments and comparisons on a laboratory machine under various operating conditions.
基金
supported by Shenzhen Science and Technology Program under Grant JCYJ20250604175412017
the National Natural Science Foundation of China under Grant 62473387
the Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) under Grant SML2024SP007
in part by the Department of Science and Technology of Guangdong Province under Grant. 2021QN020085。