摘要
为了提高柴油与水的乳化混合效果,提出一种T型截面双螺旋静态混合器。采用多相流混合Mixer模型对该混合器内液液两相湍流混合的浓度场进行模拟,并与PLIF实验结果进行对比。结果表明:模拟与实验所得的主相体积分数分布基本相同,分离强度I模拟结果与实验结果最大偏差为9.3%,验证了数值模型的可靠性。对混合器的混合效果进行评价,并应用响应面分析法对其结构进行优化设计。结果表明:在Re=3 000—7 000下,混合元件长径比L/D=1、内外元件宽度比W=2∶3、内元件扭角α=280°、外元件扭角β=270°时,T型截面双螺旋静态混合器的混合效果最优。在流体流经3个混合元件后,I达到0.01,达到良好的混合程度;混合器出口处I达到0.000 1。相比传统SK静态混合器,T型截面双螺旋静态混合器混合效果更佳。
In order to improve the emulsification mixing effect of diesel and water,a T-shaped double helix static mixer is proposed.The concentration field of liquid-liquid turbulent mixing in the mixer was simulated by using multiphase flow mixing model,and the results were compared with PLIF experimental results.The results show that the volume fraction distributions obtained from simulation and experiment are basically the same.The maximum deviation between the simulation result of the separation intensity I calculated by the Realizable k-εmodel and the experimental result is 9.3%,verifying the reliability of the numerical model.The mixing effect of the mixer was evaluated,and its structure was optimized by response surface analysis.The results show that when Re=3000-7000,the mixing effect of T-shaped cross-section double helix static mixer is the best when the ratio of length to diameter of mixing element L/D=1,the width ratio of inner and outer elements W=23,the twist angle of inner elementα=280°and the twist angle of outer elementβ=270°.After the fluid flows through the three mixing elements,I reaches 0.01,reaching a good degree of mixing.The I at the outlet of the mixer reaches 0.0001.Compared with traditional SK static mixer,T-shaped cross-section double helix static mixer has better mixing effect.
作者
张春梅
李祯辉
赵朔
安奕昕
卢颢轩
ZHANG Chunmei;LI Zhenhui;ZHAO Shuo;AN Yixin;LU Haoxuan(School of Mechanical and Power Engineering,Shenyang University of Chemical Technology,Shenyang 110142,Liaoning Province,China)
出处
《化学工程》
北大核心
2025年第12期51-57,共7页
Chemical Engineering(China)
基金
辽宁省应用基础研究项目(2023JH2/101300006)。
关键词
静态混合器
分离强度
优化设计
响应面
static mixer
separation intensity
optimize design
response surface