摘要
在冲击荷载作用下,岩体的力学性能及能量耗散规律相比于静载时具有差异性,研究岩体动态破坏规律可为工程爆破提供新的参考方法。文章以花岗岩为对象,采用分离式霍普金森压杆系统做冲击试验,分析其单轴冲击下的应力-应变曲线、宏观破坏形态及能量耗散特征,并基于能量平衡理论引入储能效率表征其能量储存能力。结果显示:花岗岩受单轴冲击时,应力-应变曲线依次经历弹性、塑性变形及破坏阶段;动态抗压强度存在应变率效应;试样破坏程度随应变率增加,从较完整向碎裂、粉碎状态过渡;入射能、反射能、透射能和吸收能随应变率线性增长,通过储能效率可定量分析单位时间内能量损耗规律。
The mechanical properties and energy dissipation behavior of rock under impact loading differ significantly from those under static loading.Investigating the dynamic failure mechanisms of rock provides new insights for engineering blasting design.In this study,granite was selected as the research object,and impact tests were conducted using a Split Hopkinson Pressure Bar(SHPB)system.The stress-strain curve,macroscopic failure patterns and energy dissipation characteristics of granite under conventional uniaxial impact were analyzed.Based on the energy balance theory,an energy storage efficiency parameter was introduced to evaluate the energy storage capacity of granite.The results show that under uniaxial impact loading,the stress-strain curve of granite rapidly enters the elastic stage,followed by a dominant plastic deformation stage,and finally transitions into the failure stage.With increasing strain rate,evolves from an intact state to a fractured state,and ultimately to a pulverized state.The incident,reflected,transmitted,and absorbed energies all increase linearly with strain rate.The proposed energy storage efficiency enables a quantitative analysis of the energy dissipation behavior of granite over time.
作者
陈云娟
段鸿杰
姜萌
张惠富
苏家瑞
CHEN Yunjuan;DUAN Hongjie;JIANG Meng;ZHANG Huifu;SU Jiarui(School of Civil Engineering,Shandong Jianzhu University,Jinan 250101,China;Key Laboratory of Building Structural Retrofitting and Underground Space Engineering(Shandong Jianzhu University),Ministry of Education,Jinan 250101,China;Dongying Chengtou Real Estate Co.,Ltd.,Dongying 257091,China)
出处
《山东建筑大学学报》
2025年第6期9-15,共7页
Journal of Shandong Jianzhu University
基金
国家自然科学基金面上项目(42172310)
泰山学者工程专项经费资助项目(tsqn202408226,tsqn202312192)。
关键词
冲击荷载
应变率效应
能量耗散
储能效率
破坏形态
impact load
strain rate effect
energy dissipation
energy storage efficiency
failure morphology