期刊文献+

Influence of Nozzle Geometry and Operating Parameters on High-PressureWater Jets

在线阅读 下载PDF
导出
摘要 High-pressure water jet technology has emerged as a highly effective method for removing industrial-scale deposits from pipelines,offering a clean,efficient,and environmentally sustainable alternative to conventional mechanical or chemical cleaning techniques.Among the many parameters influencing its performance,the geometry of the nozzle plays a decisive role in governing jet coherence,impact pressure distribution,and overall cleaning efficiency.In this study,a comprehensive numerical and experimental investigation is conducted to elucidate the influence of nozzle geometry on the behavior of high-pressure water jets.Using Computational Fluid Dynamics(CFD)simulations based on the Volume of Fluid(VOF)approach,the jet dynamics and impingement characteristics of three representative nozzle configurations—flat,conical,and tapered—are systematically analyzed.Particular attention is devoted to the tapered nozzle,where variations in the outlet diameter are explored to determine their effect on flow structure,jet stability,and impact performance.The numerical predictions are rigorously validated against experimental measurements,demonstrating excellent quantitative agreement and confirming the robustness of the computational model.Results show that the tapered nozzle,characterized by its elongated conical transition section,promotes a more stable jet core and superior efflux performance compared to flat and conical geometries.Furthermore,the exit diameter is found to exert a profound influence on jet development.At an inlet pressure of 130 MPa,increasing the tapered nozzle's outlet diameter from 0.8 mm to 1.2 mm enlarges the coherent core region,enhances jet stability,and improves hydraulic energy utilization.Under these conditions,the total impact pressure on the target surface increases by 33.14%,while the overall cleaning efficiency improves by 40.44%.
出处 《Fluid Dynamics & Materials Processing》 2025年第11期2761-2777,共17页 流体力学与材料加工(英文)
基金 the Natural Science Foundation of Shandong Province,China(No.ZR2021QE157).
  • 相关文献

参考文献1

二级参考文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部