摘要
The increasing consciousness about the depletion of natural resources and the sustainability agenda are the major driving forces to try to reuse and recycle organic materials such as agri-food and industrial wastes.In this context,keratin fibers,as a waste from the tannery industry,represent a great opportunity for the development of green functional materials.In this paper,keratin fibers were surface functionalized using the Layer-by-Layer(LbL)deposition technique and then freeze-dried in order to obtain a lightweight,fire-resistant,and sustainable material.The LbL coating,made with chitosan and carboxymethylated cellulose nanofibers,is fundamental in enabling the formation of a self-sustained structure after freeze-drying.The prepared porous fiber networks(density 100 kg m^(-3))display a keratin fiber content greater than 95 wt%and can easily self-extinguish the flame during a flammability test in a vertical configuration.In addition,during forced combustion tests(50 kW m^(-2))the samples exhibited a reduction of 37% in heat release rate and a reduction of 75%in smoke production if compared with a commercial polyurethane foam.The results obtained represent an excellent opportunity for the development of fire-safe sustainable materials based on fiber wastes.
基金
supported by the Italian Ministry of University(MIUR)call PRIN 2017 with the project“PANACEA:A technology Platform for the sustainable recovery and advanced use of NAnostructured CEllulose from Agro-food residues”(grant No.2017LEPH3M).