期刊文献+

Brain-computer Interaction in the Smart Era

在线阅读 下载PDF
导出
摘要 The brain-computer interface(BCI)system serves as a critical link between external output devices and the human brain.A monitored object’s mental state,sensory cognition,and even higher cognition are reflected in its electroencephalography(EEG)signal.Nevertheless,unprocessed EEG signals are frequently contaminated with a variety of artifacts,rendering the analysis and elimination of impurities from the collected EEG data exceedingly challenging,not to mention the manual adjustment thereof.Over the last few decades,the rapid advancement of artificial intelligence(AI)technology has contributed to the development of BCI technology.Algorithms derived from AI and machine learning have significantly enhanced the ability to analyze and process EEG electrical signals,thereby expanding the range of potential interactions between the human brain and computers.As a result,the present BCI technology with the help of AI can assist physicians in gaining a more comprehensive understanding of their patients’physical and psychological status,thereby contributing to improvements in their health and quality of life.
出处 《Current Medical Science》 2024年第6期1123-1131,共9页 当代医学科学(英文)
基金 supported by grants from the National Innovation Platform Development Program(No.2020021105012440) the National Natural Science Foundation of China(No.82172524,81974355) the Major Program(JD)of Hubei Province(No.JD2023BAA005).
  • 相关文献

参考文献1

二级参考文献13

  • 1MAEDER C L, SANNELL1 C, HAUFE S A. Pre-stimulus sensurimotor rhythms influence brain computer interface clas sification performance [J]. IEEE Transactions on Neural Sys tems and Rehabilitation Engineering, 2012, 20(5): 653-662.
  • 2LAHAT D, CARDOSO J, MESSER H. Second-order multi dimensional ICA: performance analysis [J]. IEEE Trans Sig- nal Process, 2012, 60(9): 4598-4610.
  • 3DOMANOV I, DE LATHAUWER L. Blind channel identifi- cation of MISO systems based on the CP decomposition of eu mulant tensors [C]// 2011 19th European Signal Processing Conference. Barcelona: 2011: 2215-2218.
  • 4DE LATHAUWER L, CASTAING J. Blind identification of underdetermined mixtures by simultaneous matrix diagonal- ization [J]. IEEE Trans Signal Process, 2008, 56(3) : 1096 1105.
  • 5TICHAVSKY P, YEREDOR A. Fast approximate joint diag- onalization incorporating weight matrices [J]. IEEE Trans Signal Process, 2009, 57(3): 878-891.
  • 6DE LATHAUWER L. A link between the canonical decom position in multilinear algebra and simultaneous matrix diago nalization [J].SIAM J Matrix Anal Appl, 2006, 28(3): 642-666.
  • 7KIM S G, YOO C D. Underdetermined blind source separa tion based on subspaee representation [J].IEEE Trans Signal Process, 2009, 57(7): 2604-2614.
  • 8DE LATHAUWER L, CASTAING J. Second order blind i- dentification of underdetermined mixtures [C]// 6th Interna tional Conference, ICA 2006, Charleston, SC, USA, March 5-8, 2006. Berlin Heidelberg: Springer, 2006: 40-47.
  • 9PAATERO P. A weighted non-negative least squares algo rithm for three-way'PARAFAC' factor analysis [J]. Chemo metrics and Intelligent Laboratory Systems, 1997, 38 (2) 223-242.
  • 10YEREDOR A. On blind channel identification and equaliza tion over Galois fields [C]// 2014 IEEE International Confer ence on Acoustics, Speech and Signal Processing (ICASSP) Florence, 2014, 4239-4243.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部