期刊文献+

基于PoseNet算法改进的手势识别

An Advanced Gesture Recognition System Utilizing an Improved Version of the PoseNet Algorithm
在线阅读 下载PDF
导出
摘要 本研究旨在通过引入注意力机制和优化损失函数,实现基于PoseNet模型的手势识别性能的提升。我们选择了MPII Human Pose数据集作为实验平台,该数据集提供了全身姿态估计的信息,通过数据处理将研究焦点集中在手部及其局部特征上,从而实现手势识别工作的评估。实验结果显示,在PCK和mAP等评价指标下,改进模型的性能得到了一定的提升;同时,模型在处理复杂环境条件下的稳定性和实时性也得到了增强通过数据分析和实证验证。 This study aims to improve the performance of gesture recognition based on the PoseNet model by incorporating attention mechanisms and optimizing the loss function.The MPII Human Pose dataset was chosen as the experimental platform,providing comprehensive information on full-body pose estimation.Through data processing,the research focus was directed towards the hand and its local features,thereby facilitating the evaluation of the gesture recognition task.Experimental results show that the performance of the improved model has been enhanced,as indicated by evaluation metrics such as PCK and mAP.Additionally,the model's stability and real-time capabilities under complex environmental conditions have also been strengthened.Through data analysis and empirical validation.
作者 赵佳娜 赵建光 Zhao Jiana;Zhao Jianguang(Information Engineering College,Hebei University of Architecture,Zhangjiakou,China)
出处 《科学技术创新》 2025年第18期105-108,共4页 Scientific and Technological Innovation
关键词 手势识别 PoseNet模型 注意力机制 损失函数优化 gesture recognition PoseNet Model attention mechanism loss function optimization
  • 相关文献

参考文献3

二级参考文献17

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部