摘要
机电式主动悬架系统实现车辆垂向性能调节时,由于机电系统的转动惯量属性,经典二自由度1/4车悬架模型无法描述该悬架系统的运动。此外,道路激励常被作为悬架状态空间的扰动项,由于道路激励无法准确估计,因此考虑道路激励的多维LQR控制率也无法直接构成。为解决上述问题,设计了一种全新的主动悬架前馈LQR控制方法(FF-LQR)。一方面基于三自由度1/4车悬架模型对LQR算法进行针对性设计,另一方面通过构建轮胎-车身运动模型,实现悬架动行程的实时反馈,并以此构建前馈控制率。仿真结果表明:与LQR算法相比,FF-LQR能够进一步降低车身垂向加速度的RMS值和轮胎动变形的RMS值,提高车辆舒适性。
The electromechanical active suspension system adjusts the vehicle’s vertical performance by providing motor torque.Due to the moment of inertia property of the electromechanical system,the classic 2-DOF quarter vehicle suspension model fails to describe the motion of this suspension system.Moreover,road information is regarded as a disturbance term in the state-space of the suspension.Since road excitation is not accurately estimated,a multi-dimensional LQR control law considering road excitation cannot be directly formulated.To address the problems above,a novel active suspension feedforward control method(FF-LQR)is designed.In the FF-LQR method,LQR is designed based on 3-DOF quarter vehicle suspension model.The real-time feedback of the suspension working space is realized by building a tire-body motion model.Then,the control law of front feed method is designed with suspension working space.Simulation results show FF-LQR further reduces the RMS values of the vehicle body’s vertical acceleration and tire dynamic deformation compared to the LQR algorithm,thus improving vehicles’ride comfort.
作者
王凯正
林棻
狄桓宇
钟国旗
WANG Kaizheng;LIN Fen;DI Huanyu;ZHONG Guoqi(Guangzhou Automobile Group Co.,Ltd.,Guangzhou 510623,China;College of Energy and Power Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China)
出处
《重庆理工大学学报(自然科学)》
北大核心
2025年第7期53-59,共7页
Journal of Chongqing University of Technology:Natural Science
基金
广东省科技计划项目(2023B1212020010)。