Overlapping Domain Decomposition Methods Based on Tensor Format for Solving High-Dimensional Partial Differential Equations
摘要
Based on the equivalence between the Sylvester tensor equation and the linear equation obtained by discretization of partial differential equations(PDEs),an overlapping Schwarz alternative method based on the tensor format and an overlapping parallel Schwarz method based on the tensor format for solving high-dimensional PDEs are proposed.The complexity of the new algorithms is discussed.Finally,the feasibility and effectiveness of the new methods are verified by some numerical examples.
基金
supported by the National Natural Science Foundation of China(12161027)
the Guangxi Natural Science Foundation of China(2020GXNSFAA159143)
partially supported by the Science and Technology Project of Guangxi of China(Guike AD23023002).
二级参考文献35
-
1Bader B W, Kolda T G. Efficient MATLAB computations with sparse and factored tensors. SIAM J Sci Comput,2007, 30: 205-231.
-
2Bader B W, Kolda T G, MATLAB Tensor Toolbox, Version 2.4. Available at http://csmr.ca.sandia.gov/ stgkolda/ TensorToolbox/, 2010.
-
3Bai Z Z, Golub G H, Ng M K. Hermitian and skew-hermitian splitting methods for non-hermitian positive definite linear systems. SIAM J Matrix Anal Appl, 2003, 24: 603-626.
-
4Ballani J, Grasedyck L. A Projection method to solve linear systems in tensor format. Numer Linear Algebra Appl, doi: 10.1002/nla.1818.
-
5Beylkin G, Mohlenkamp M J. Algorithms for numerical analysis in high dimensions. SIAM J Sci Comput, 2005, 26:2133-2159.
-
6Ding F, Chen T. Gradient based iterative algorithms for solving a class of matrix equations. IEEE Trans Automat Control, 2005, 50: 1216-1221.
-
7Ding F, Chen T. Iterative least squares solutions of coupled Sylvester matrix equations. Systems Control Lett, 2005,54: 95-107.
-
8Golub G H, Nash S, Van Loan C F. A Hessenberg-Schur method for the problem AX + XB = C. IEEE Trans Auto Control, 1979, 24: 909-913.
-
9Golub G H, Van Loan C F. Matrix Computations, 3rd ed. Baltimore, Maryland: Johns Hopkins University Press,1996.
-
10Grasedyck L. Existence and computation of low Kronecker-rank approximations for large linear systems of tensor product structure. Computing, 2004, 72: 247-265.
共引文献18
-
1汪学海,吴胤林.非定常扩散方程的虚边界元解法[J].北京工商大学学报(自然科学版),2008,26(6):73-76. 被引量:1
-
2张培茹,赵凤群,周千,何静.二维偏微分方程的小波配点法[J].西安理工大学学报,2010,26(1):121-125.
-
3汪学海.基于双层位势的非定常扩散方程的虚边界元解法[J].河南城建学院学报,2011,20(2):74-76.
-
4李宛珊,王文洽.二维热传导方程的有限差分区域分解算法[J].山东大学学报(理学版),2011,46(12):1-5. 被引量:7
-
5尹永学,朴光日.一类热传导方程区域分解简易算法[J].延边大学学报(自然科学版),2012,38(2):100-103. 被引量:2
-
6张红梅,岳素芳,许娟.热传导方程紧差分格式的区域分解算法[J].廊坊师范学院学报(自然科学版),2012,12(4):9-10.
-
7刘琳,丁睿.弹性静力学问题的伪谱区域分解方法[J].南通大学学报(自然科学版),2013,12(1):64-70.
-
8陈震,王炫盛.求解Sylvester张量方程的隐式共轭梯度法[J].南昌大学学报(理科版),2013,37(2):127-130. 被引量:3
-
9陈震.基于梯度算法解Sylvester张量方程最佳收敛因子的选取[J].南昌大学学报(工科版),2013,35(2):180-183.
-
10赵建强,孙运楼,秦佳敏,胡继宝.不同形状盘子在电烤箱中加热后的热量分布数学模型及数值模拟[J].新乡学院学报,2013,30(4):249-251.