期刊文献+

Overlapping Domain Decomposition Methods Based on Tensor Format for Solving High-Dimensional Partial Differential Equations

在线阅读 下载PDF
导出
摘要 Based on the equivalence between the Sylvester tensor equation and the linear equation obtained by discretization of partial differential equations(PDEs),an overlapping Schwarz alternative method based on the tensor format and an overlapping parallel Schwarz method based on the tensor format for solving high-dimensional PDEs are proposed.The complexity of the new algorithms is discussed.Finally,the feasibility and effectiveness of the new methods are verified by some numerical examples.
出处 《Communications on Applied Mathematics and Computation》 2025年第3期987-1001,共15页 应用数学与计算数学学报(英文)
基金 supported by the National Natural Science Foundation of China(12161027) the Guangxi Natural Science Foundation of China(2020GXNSFAA159143) partially supported by the Science and Technology Project of Guangxi of China(Guike AD23023002).
  • 相关文献

参考文献2

二级参考文献35

  • 1Bader B W, Kolda T G. Efficient MATLAB computations with sparse and factored tensors. SIAM J Sci Comput,2007, 30: 205-231.
  • 2Bader B W, Kolda T G, MATLAB Tensor Toolbox, Version 2.4. Available at http://csmr.ca.sandia.gov/ stgkolda/ TensorToolbox/, 2010.
  • 3Bai Z Z, Golub G H, Ng M K. Hermitian and skew-hermitian splitting methods for non-hermitian positive definite linear systems. SIAM J Matrix Anal Appl, 2003, 24: 603-626.
  • 4Ballani J, Grasedyck L. A Projection method to solve linear systems in tensor format. Numer Linear Algebra Appl, doi: 10.1002/nla.1818.
  • 5Beylkin G, Mohlenkamp M J. Algorithms for numerical analysis in high dimensions. SIAM J Sci Comput, 2005, 26:2133-2159.
  • 6Ding F, Chen T. Gradient based iterative algorithms for solving a class of matrix equations. IEEE Trans Automat Control, 2005, 50: 1216-1221.
  • 7Ding F, Chen T. Iterative least squares solutions of coupled Sylvester matrix equations. Systems Control Lett, 2005,54: 95-107.
  • 8Golub G H, Nash S, Van Loan C F. A Hessenberg-Schur method for the problem AX + XB = C. IEEE Trans Auto Control, 1979, 24: 909-913.
  • 9Golub G H, Van Loan C F. Matrix Computations, 3rd ed. Baltimore, Maryland: Johns Hopkins University Press,1996.
  • 10Grasedyck L. Existence and computation of low Kronecker-rank approximations for large linear systems of tensor product structure. Computing, 2004, 72: 247-265.

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部