期刊文献+

Unsupervised Time-Series Signal Analysis with Autoencoders and Vision Transformers:A Review of Architectures and Applications

在线阅读 下载PDF
导出
摘要 The rapid growth of unlabeled time-series data in domains such as wireless communications,radar,biomedical engineering,and the Internet of Things(IoT)has driven advancements in unsupervised learning.This review synthe-sizes recent progress in applying autoencoders and vision transformers for un-supervised signal analysis,focusing on their architectures,applications,and emerging trends.We explore how these models enable feature extraction,anomaly detection,and classification across diverse signal types,including electrocardiograms,radar waveforms,and IoT sensor data.The review high-lights the strengths of hybrid architectures and self-supervised learning,while identifying challenges in interpretability,scalability,and domain generaliza-tion.By bridging methodological innovations and practical applications,this work offers a roadmap for developing robust,adaptive models for signal in-telligence.
出处 《Journal of Intelligent Learning Systems and Applications》 2025年第2期77-111,共35页 智能学习系统与应用(英文)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部