期刊文献+

基于DPDK的集群内并发数据流传输机制研究

Research on Concurrent Data Stream Transmission Mechanism in Clusters Based on DPDK
在线阅读 下载PDF
导出
摘要 针对人工智能和物联网技术发展带来的大规模AI数据流传输需求,文章基于DPDK框架,设计了一种高性能的并发数据流传输机制,以优化集群内节点间的数据通信效率。并提出了高性能传输策略,结合端口分配策略以及双链路聚合调度策略,实现了大数据流的多端口并行传输。通过多网卡绑定、多核分配技术,以及反向流量控制机制,系统能够动态调整传输路径,优化带宽利用率,显著降低传输延迟和丢包率。实验表明,该方案在吞吐量、延迟和丢包率方面相较传统方法具有显著优势,在高并发场景下展现出优异的性能扩展性。本研究为大规模AI数据流的高效传输提供了一种低成本、高效率的解决方案,可为未来大数据和人工智能领域的分布式计算系统设计提供重要参考。 To address the demand for large-scale AI data stream transmission driven by the development of artificial intelligence and the Internet of Things,this study designs a high-performance concurrent data streaming mechanism based on the DPDK framework to optimize the data communication efficiency between nodes in the cluster.In this study,a high-performance transmission strategy is proposed,which combines the port allocation strategy and the dual-link aggregation scheduling strategy to realize the multi-port parallel transmission of large data streams.Through multi-NIC binding,multi-core distribution technology,and reverse flow control mechanism,the system can dynamically adjust the transmission path,optimize bandwidth utilization,and significantly reduce transmission delay and packet loss rate.Experiments show that the proposed scheme has signifi-cant advantages over traditional methods in terms of throughput,latency,and packet loss rate,and shows excellent performance scalability in high-concurrency scenarios.This paper provides a low-cost and high-efficiency solution for the efficient transmission of large-scale AI data streams,which can provide an important reference for the design of distributed computing systems in the field of big data and artificial intelligence in the future.
作者 沈非凡 陈庆奎 Feifan Shen;Qingkui Chen(School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai)
出处 《建模与仿真》 2025年第5期1139-1152,共14页 Modeling and Simulation
关键词 DPDK 高性能通信 AI数据流 负载均衡 集群 DPDK High-Performance Communication AI Data Stream Load Balancing Cluster
  • 相关文献

参考文献5

二级参考文献30

  • 1吴恩华.图形处理器用于通用计算的技术、现状及其挑战[J].软件学报,2004,15(10):1493-1504. 被引量:141
  • 2谢向辉,彭龙根,吴志兵,卢德平.基于InfiniBand的高性能计算机技术研究[J].计算机研究与发展,2005,42(6):905-912. 被引量:13
  • 3彭宏,刘洋,邓维维,郑启伦.股票数据流的相关性计算方法[J].华南理工大学学报(自然科学版),2006,34(1):86-89. 被引量:9
  • 4曹锋,周傲英.基于图形处理器的数据流快速聚类[J].软件学报,2007,18(2):291-302. 被引量:24
  • 5ZHU Yun-yue,SHA-SHA D.StatStream:statistical monitoring of thousands of data streams in real-time[C]//Proc of the 28th International Conference on Very Large Data Bases.2002:358-369.
  • 6PAPADIMITRIOU S,SUN Ji-meng,FALOUTSOS C.Streaming pattern discover in multiple time-series[C]//Proc of the 31st International Conference on Very Large Data Bases.2005:697-708.
  • 7DAI Bi-ru,HUANG J W,YEH M Y,et al.Clustering on demand for multiple data streams[C]//Proc of the 4th IEEE International Conference on Data Mining.2004:367-370.
  • 8GOVINDARAJU N K,RAGHUVANSHI N,MANOCHA D.Fast and approximate stream mining of quantiles and frequencies using gra-phics processors[C]//Proc of ACM International Conference on Management of Data.New York:ACM,2005:611-622.
  • 9GOLAB L,GARG S,ZSU M T.On indexing sliding windows over online data streams[C]//Proc of EDBT.Berlin:Springer-Verlag,2004:712-729.
  • 10GAMA J,GABER M M.Learning from data streams[M].Berlin:Springer,2007:25-38.

共引文献102

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部