摘要
针对光反应和热反应依次进行的光热协同分解水制氢技术,以溶胶凝胶法合成的CeO_(2)及其金属掺杂催化剂为研究对象,实验测试了3种元素(Fe、Cu、Zn),3个比例(5%、10%、15%)掺杂CeO_(2)催化剂的光反应生成氧空位和热反应产氢的效果。通过X射线衍射(XRD)、透射电子显微镜(TEM)、电子顺磁共振(EPR)、光致发光(PL)、紫外-可见漫反射光谱(UV-Vis DRS)、感应耦合等离子体(ICP)、BET比表面积测试法(BET)等手段对金属掺杂催化剂进行表征分析。研究结果表明:10%Cu掺杂CeO_(2)光热制氢效果最好,这是因为Cu纳米颗粒具有最小的尺寸,导致Cu掺杂CeO_(2)催化剂具有最小的禁带宽度,从而能够吸收更高能量的光子,增强了光吸收能力,提升了光生载流子的分离和结合速率,有利于形成光生氧空位,从而增强了热反应过程中分解水制氢的能力。
Focusing on the photo-thermochemical water splitting hydrogen production technology,where photoreaction and thermal reaction are carried out sequentially,the CeO_(2) synthesized by sol-gel method and its metal-doped catalysts were taken as the research objects to carry out experimental tests,through which the effects of photoreaction in generating oxygen vacancies and thermal reaction in hydrogen production were investigated.During the photoreaction,CeO_(2) catalysts doped with three elements(Fe,Cu,Zn)at three different ratios(5%,10%,15%)were used.The metal-doped catalysts were characterized by several methods,such as X-ray diffraction(XRD),transmission electron microscopy(TEM),electron paramagnetic resonance(EPR),photoluminescence(PL),ultraviolet visible diffuse reflectance spectroscopy(UV-Vis DRS),inductively coupled plasma(ICP),and BET specific surface area testing method.The results indicate that,the 10%Cu-doped CeO_(2) catalyst exhibits the best photothermal hydrogen production performance.This is attributed to the smallest size of Cu nanoparticles,which results in the smallest bandgap width for the Cu-doped CeO_(2) catalyst.Consequently,it can absorb higher energy photons,enhancing the light absorption capacity,and improving the separation and recombination rates of photogenerated charge carriers.This facilitates the formation of photogenerated oxygen vacancies,thereby enhances the hydrogen production capability during the thermal reaction process.
作者
张志银
胡慧敏
何正光
杨洁
颜凯
张博涵
温昶
ZHANG Zhiyin;HU Huimin;HE Zhengguang;YANG Jie;YAN Kai;ZHANG Bohan;WEN Chang(PowerChina Hubei Electric Engineering Co.,Ltd.,Wuhan 435111,China;School of Energy and Power Engineering,Huazhong University of Science and Technology,Wuhan 430074,China)
出处
《热力发电》
北大核心
2025年第5期25-32,共8页
Thermal Power Generation
基金
国家重点研发计划项目(2022YFB4003801)
国家自然科学基金面上项目(52076091)
中国电力建设股份有限公司科技项目(DJ-ZDXM-2023-16)。
关键词
氧空位
掺杂
光热循环
电解水
产氢
oxygen vacancy
dope
photo-thermochemical cycle
water electrolysis
hydrogen production