期刊文献+

结合开发者依赖的图神经网络缺陷预测方法

Graph Neural Network Defect Prediction Method Combined with Developer Dependencies
在线阅读 下载PDF
导出
摘要 在软件开发过程中,及时识别和处理高风险缺陷模块是至关重要的。传统的软件缺陷预测方法主要基于代码相关的信息,但常常忽略了开发者个人特质对软件质量的影响。针对这一问题,提出了一种新型的结合开发者一致性依赖网络的软件缺陷预测模型DCN4SDP。首先利用开发者信息构建了一个开发者一致性依赖网络,并提取代码相关的度量作为网络的初始度量元,通过使用双向门控图神经网络学习网络结构上的节点特征。实验结果表明,DCN4SDP模型在多个标准数据集上的性能显著优于传统机器学习分类器和其他深度学习方法,AUC值达到了0.91,F1值达到了0.76,均显著高于其他对比模型。这些优势表明将开发者维度融入软件缺陷预测能够有效提升模型的预测能力和应用价值,且为未来的软件缺陷预测研究提供了新的思路和方向。 In the software development process,timely identification and handling of high-risk defect modules are crucial.Traditional software defect prediction methods primarily rely on code-related information but often overlook the impact of developers’personal characteristics on software quality.To address this issue,this study proposes a novel software defect prediction model,DCN4SDP,which incorporates a developer consistency dependency network.This model first constructs a developer consistency dependency network using developer information and extracts code-related metrics as initial features for the network.It then employs a bidirectional gated graph neural network(BiGGNN)to learn the node features within the network structure.Experimental results demonstrate that the DCN4SDP model significantly outperforms traditional machine learning classifiers and other deep learning methods on multiple standard datasets.For instance,the DCN4SDP achieves an AUC value of 0.91 and a F1 score of 0.76,both notably higher than those of other compared models.These advantages indicate that integrating the developer dimension into software defect prediction can effectively enhance the model’s predictive capabilities and practical value,providing new insights and directions for future research in software defect prediction.
作者 乔羽 徐涛 张亚 文凤鹏 李强伟 QIAO Yu;XU Tao;ZHANG Ya;WEN Fengpeng;LI Qiangwei(Department of Computer Science and Technology,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China;Network Center,Zaozhuang University,Zaozhuang,Shandong 277015,China)
出处 《计算机科学》 北大核心 2025年第6期52-57,共6页 Computer Science
基金 国家自然科学基金(62202223) 江苏省自然科学基金(BK20220881) 工信部安全关键软件重点实验室(南京航空航天大学)开放项目(NJ2022027)。
关键词 软件缺陷预测 双向门控图神经网络 开发者信息 深度学习 图神经网络 软件工程 Software defect prediction Bidirectional gated graph neural network Developer information Deep learning Graph neural network Software engineering
  • 相关文献

参考文献1

二级参考文献6

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部