摘要
Two-dimensional(2D)transition-metal dichalcogenides(TMDs)materials have unique band structure as well as excellent electrical and optical properties,which exhibit great advantages in optoelectronic devices.Chemical vapor deposition(CVD),a method to realize the synthesis of large-scale 2D TMDs materials,will inevitably introduce defects in the growth process,thus decreasing the performance of 2D TMDs-based optoelectronic devices.In order to fundamentally address this issue,we proposed a method to gradually regulate the reaction concentration of precursor during growth.As a result,the suitable concentration of precursor can effectively enhance the probability of covalent binding of X-M(X:S,Se,etc.;M:Mo,W,etc.),thus suppressing the generation of vacancy defects.Furthermore,we explored sulfur vacancy(V_(S))on the performance of 2D molybdenum disulfide-based(MoS_(2)-based)self-powered devices through constructing p-type silicon/MoS_(2)(p-Si/MoS_(2))based p-n heterojunction.The photodetector composed of optimized MoS_(2) nanosheets exhibited high responsivity(330.14 A·W^(-1)),fast response speed(40μs/133μs),and excellent photovoltage stability.This method of regulating the low temperature region during CVD growth can realize the preparation of high-quality TMDs films and be applied in high-performance optoelectronic devices.
基金
the National Natural Science Foundation of China(No.62174015)
Department of Science and Technology of Jilin Province(No.YDZJ202402081CXJD).