期刊文献+

基于贝叶斯决策理论的罕见病临床试验样本含量估算方法

An Approach for Sample Size Determination in Clinical Trials of Rare Diseases based on Bayesian Decision Theory
暂未订购
导出
摘要 目的 传统的临床试验样本量估算方法在估算过程中未考虑结果所适用的患者规模,且对参数的未知真值采用了点估计,在罕见病临床试验中具有一定局限性,因此本文介绍了基于贝叶斯决策理论的样本量估算方法。方法 本文提出三方平衡收益函数(TBBF),根据急性疾病和慢性疾病的特点构建了收益函数模型,通过最大化期望收益确定试验的样本量。结果 通过B型血友病案例分析展示了模型应用过程,最大化期望收益所得到的样本量在现实情况中可行,该方法具有适用于小样本临床试验样本量估算的优点。结论 TBBF充分利用了先验信息,将患者规模纳入了估算过程,且令不同相关方利益的量化形式变得更加清晰,使决策过程更具有科学性和可解释性。 Objective Traditional methods for sample size estimation in clinical trial do not consider the patient size applicable to the results during the estimation process,and use point estimation for unknown true values of parameters,which has certain limitations in rare disease clinical trials.This article introduces a sample size estimation method based on Bayesian decision theory.Methods This article proposes a Tripartite Balanced Benefit Function(TBBF)and constructs a benefit function model based on the characteristics of acute and chronic diseases.The sample size in clinical trial is determined by maximizing expected benefits.Results The case analysis of hemophilia B demonstrated the application process of the model,and the sample size obtained by maximizing expected benefits is feasible in practical situations.This method has the advantage of being suitable for estimating sample sizes in small sample clinical trials.Conclusion TBBF fully utilizes prior information,incorporates patient size into the estimation process,and makes the quantitative form of different stakeholders′interests clearer,making the decision-making process more scientific and interpretable.
作者 陈娜娜 荣志炜 侯艳 Chen Nana;Rong Zhiwei;Hou Yan(Department of Biostatistics,School of Public Health,Peking University,Beijing 100191)
出处 《中国卫生统计》 北大核心 2025年第2期162-165,共4页 Chinese Journal of Health Statistics
基金 国家自然科学基金(82173615)。
关键词 罕见病 样本量 决策理论 收益函数 临床试验 Rare diseases Sample size Decision theory Benefit function Clinical trials
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部