期刊文献+

Enhanced visible-light-driven CO_(2) photoreduction into methanol using PtO/GdFeO_(3) nanocomposites

在线阅读 下载PDF
导出
摘要 Herein,PtO-supported GdFeO_(3)(PtO/GdFeO_(3))composite photocatalysts were synthesized by a solutionbased technique.Extensive analysis using various analytical instruments has shown that PtO plays a crucial function in augmenting the visible light absorption capacity of composites.Better photogenerated charge carrier transport was credited with this improvement,which led to a decrease in bandgap energy as low as 2.14 eV.The PtO/GdFeO_(3) nanocomposites showed remarkable photocatalytic activity when exposed to visible light,especially in the conversion of CO_(2) into CH_(3)OH.After 9 h of light,a noteworthy yield of 1550μmol·g^(−1) of methanol was produced,demonstrating maximum efficiency at a dose of 2.0 g·L^(−1) and a concentration of 5.0%PtO/GdFeO_(3).This yield indicates the effectiveness of the heterostructure,which outperformed pristine GdFeO_(3) by a factor of 7.85.This significant enhancement highlights the potential advantages of the modified structure in improving performance.Most significantly,the photocatalyst's durability maintained 98.0%of its initial efficacy throughout five cycles.The success of PtO/GdFeO_(3) is largely due to the synergistic light absorption capabilities and enhanced photocharge carrier separation that the integration of PtO produced.It highlights the conversion of CO_(2) into valuable chemicals under visible light exposure,as well as the promise of mixed oxide nanostructures in ecologically responsible material creation.
出处 《Chinese Journal of Chemical Engineering》 2025年第2期131-139,共9页 中国化学工程学报(英文版)
基金 support from National Natural Science Foundation of China(21771047) Natural Science Foundation of Heilongjiang Province,China(YQ2020E029) Open Project of State Key Laboratory of Inorganic Synthesis&Preparative Chemistry,Jilin University(2023-17).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部