摘要
在变形温度为250~400℃、应变速率为0.001~1 s^(-1)的条件下,采用Gleeble-3800型热模拟实验机对Mg-6Zn-1Mn-2Sn-0.5Ca合金进行热压缩实验,研究了合金的热变形行为,构建了其本构方程,以及绘制了其热加工图。结果表明:Mg-6Zn-1Mn-2Sn-0.5Ca合金在等温压缩变形过程中的流变应力-应变曲线具有明显的动态再结晶曲线特征,流变应力首先随着变形量的增大而增加,到达峰值后逐渐下降到某一稳态值;合金的峰值应力与应变速率呈正相关,而与变形温度呈负相关;建立的热加工图表明随着应变的增加,合金的失稳区逐渐扩大;Mg-6Zn-1Mn-2Sn-0.5Ca合金的最佳加工区域为变形温度为350~400℃,应变速率为0.001~0.01 s^(-1)。
Under the conditions of deformation temperature of 250-400℃ and strain rate of 0.001-1 s^(-1),Gleeble-3800 thermal simulation experimental machine was used to conduct hot compression experiments on Mg-6Zn-1Mn-2Sn-0.5Ca alloy.The hot deformation behavior of the alloy was studied,its constitutive equation was constructed,and its hot working map was drawn.The results show that the flow stressstrain curves of the Mg-6Zn-1Mn-2Sn-0.5Ca alloy during isothermal compression deformation exhibit obvious dynamic recrystallization curve characteristics.The flow stress first increases with the increase of deformation amount and gradually decreases to a certain steadystate value after reaching the peak.The peak stress of the alloy is positively correlated with the strain rate and negatively correlated with the deformation temperature.The established hot working map indicates that as the strain increases,the unstable zone of the alloy gradually expands.The optimal processing area for the Mg-6Zn-1Mn-2Sn-0.5Ca alloy is a deformation temperature of 350-400℃ and a strain rate of 0.001-0.01 s^(-1).
作者
陈霞
刘全义
朱禹龙
赵阳
张丁非
潘复生
CHEN Xia;LIU Quan-yi;ZHU Yu-long;ZHAO Yang;ZHANG Ding-fei;PAN Fu-sheng(College of Civil Aviation Safety Engineering,Civil Aviation Flight University of China,Guanghan 618307,China;College of Materials Science and Engineering,Chongqing University,Chongqing 400045,China;National Engineering Research Center for Magnesium Alloys,Chongqing University,Chongqing 400044,China)
出处
《材料热处理学报》
北大核心
2025年第3期77-83,共7页
Transactions of Materials and Heat Treatment
基金
中央高校基本科研业务费专项资金资助项目(J2022-090)
四川省科技计划项目(2018GZYZF0069)
国家重点研发计划项目(2016YFB0301101)。