期刊文献+

基于EMAPs的高光谱遥感多分类器集成算法

Hyperspectral Remote Sensing Multi-classifier Ensemble Algorithm Based on EMAPs
在线阅读 下载PDF
导出
摘要 针对提升高光谱遥感影像的分类表现,提出了基于EMAPs的高光谱遥感多分类器集成算法。该算法首先提取扩展多属性剖面(EMAPs)特征,然后选取极限学习机、协同表示分类器和支持向量机作为基分类器,基于提取的EMAPs特征参与集成分类。选取Purdue Campus和Indian Pines两组实验数据分析评价所提出算法的有效性,结果表明,与单分类器相比,基于EMAPs的多分类器集成算法可以取得更优异的分类表现。 In order to further improve the classification performance of hyperspectral remote sensing images,this paper proposes a hyperspectral remote sensing multi-classifier ensemble algorithm based on EMAPs.The algorithm first extracts Extended Multi-attribute Profile(EMAPs)features,selects extreme learning machine,collaborative representation classifier,and support vector machine as base classifiers,and participates in ensemble classification based on EMAPs features.By selecting the experimental data of Purdue Campus and Indian Pines to analyze and evaluate the proposed algorithm,the results show that the multi-classifier ensemble algorithm based on EMAPs can achieve better classification performance than the single classifier.
作者 虞瑶 沈泉飞 吴越 YU Yao;SHEN Quanfei;WU Yue(Basic Geographic Information Center of Jiangsu Province,Nanjing 210013,China)
出处 《测绘与空间地理信息》 2025年第2期170-173,共4页 Geomatics & Spatial Information Technology
关键词 EMAPs 极限学习机 协同表示分类器 支持向量机 高光谱影像分类 EMAPs extreme learning machine collaborative representation classification support vector machine hyperspectral image classification
  • 相关文献

参考文献5

二级参考文献237

共引文献312

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部