期刊文献+

Machine-learned interatomic potentials for transition metal dichalcogenide Mo_(1−x)W_(x)S_(2−2y)Se_(2y) alloys 被引量:1

原文传递
导出
摘要 Machine Learned Interatomic Potentials(MLIPs)combine the predictive power of Density Functional Theory(DFT)with the speed and scaling of interatomic potentials,enabling theoretical spectroscopy to be applied to larger and more complex systems than is possible with DFT.
机构地区 Department of Physics
出处 《npj Computational Materials》 CSCD 2024年第1期1497-1507,共11页 计算材料学(英文)
基金 funding from the EPSRC CDT in Modelling of Heterogeneous Systems funded by EP/S022848/1 N.D.M.H.acknowledges support from EPSRC grant number EP/V000136/1 Computing facilities were provided by the Scientific Computing Research Technology Platform of the University of Warwick through the use of the High Performance Computing(HPC)cluster Avon,and the Sulis Tier 2 platforms at HPC Midlands+funded by the Engineering and Physical Sciences Research Council(EPSRC),grant number EP/T022108/1.
  • 相关文献

同被引文献15

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部