期刊文献+

Recent progress in intrinsic defect modulation of g-C_(3)N_(4)based materials and their photocatalytic properties

原文传递
导出
摘要 The application of solar-driven photocatalytic processes shows considerable potential for renewable energy production and environmental remediation.Graphitic carbon nitride(g-C_(3)N_(4))has emerged as a highly promising metal-free photocatalyst due to its outstanding electronic structure and physicochemical properties.However,the intrinsic constraints of pristine g-C_(3)N_(4),such as limited visible light absorption range,high recombination rates of photogenerated charge carriers,and a scarcity of active sites,have significantly hindered its photocatalytic performance and practical implementations.Recent studies have demonstrated that defect engineering can substantially mitigate these issues by enhancing both light absorption and charge separation efficiency,thereby improving photocatalytic performance.This reviewprovides a comprehensive overview of intrinsically defective g-C_(3)N_(4)-based materials,focusing on the types of intrinsic defects,their modification strategies,and the recent advancements in the field.It also highlights the diverse applications of defect-modified g-C_(3)N_(4),including wastewater remediation,hydrogen evolution,CO_(2)conversion,NO removal,nitrogen fixation,photocatalytic disinfection,and H_(2)O_(2)production.Finally,the current challenges and future perspectives are discussed of g-C_(3)N_(4)-based photocatalytic materials,offering insights and practical guidance for the development of advanced g-CsN4-based photocatalysts.
出处 《Nano Research》 2025年第2期390-410,共21页 纳米研究(英文版)
基金 This work was supported by the Key Research and Development Program of Shaanxi Province(No.2022ZDLSF07-04) Xi’an Science and Technology Projects(Nos.2022JH-RYFW-0114 and 2023JH-GXRC-0196) Graduate Innovation Fund Project of Xi'an Shiyou University(No.YCX2411003).
  • 相关文献

参考文献1

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部