摘要
Aqueous zinc-ion batteries(AZIBs)are regarded as one of the most promising rivals in the upcoming high-energy secondary battery market because of their safety and non-toxicity.However,the zinc dendrites growth and hydrogen evolution corrosion of the Zn anode have seriously restricted the application of AZIBs.Herein,to overcome these constraints,a three-dimensional(3D)porous PFA-COOH-CNT artificial solid electrolyte interface(SEl)film with high hydrophobic and zincophilic properties was constructed on Zn anode surface by in-situ polymerization of furfuryl alcohol(FA)and carboxyl carbon nanotubes(COOH-CNT).A series of in-situ,ex-situ characterizations as well as the density functional theory(DFT)calculations reveal that the formed PFA-COOH-CNT SEI film with an abundant oxygen-containing group can provide abundant zincophilic sites and induce homogeneous deposition of Zn^(2+),as well as the hydrophobic alkyl and carbon skeleton in PFA-COOH-CNT SEI film can isolate the direct contact of H_(2)O with Zn anode,and inhibit the occurrence of hydrogen evolution reaction(HER).Accordingly,the Zn anode with PFA-COOH-CNT layer can attain an ultra-long cycle life of 2200 h at 1 mA·cm^(-2),1 mAh·cm^(-2).Simultaneously,the assembled PFA-COOH-CNT@ZnllV2Os full cell can also achieve a high reversible capacity of up to 150.2 mAh•g^(-1) at 1 A·g^(-1) after 400 cycles,with a high average coulombic efficiency(CE)of 98.8%.The designed PFA-COOH-CNT artificial SEI film provides a broad prospect for highly stable zinc anode,and can also be extended to other energy storage systems based on metal anodes.
基金
This study was funded by the National Natural Science Foundation of China(Nos.51902036,22222902,2263203,and 52111530236)
the National Key R&D Program of China(No.2022YFA1203902)
the Key Science and Technology Research Program of Chongqing Education Commission(No.KJZD-K202200807)
the Natural Science Foundation of Chongqing Science&Technology Commission(No.CSTB2022NSCQ-MSX0828)
Chongqing Bayu Scholars Support Program(No.YS2022050)
Research Project of Innovative Talent Training Engineering Program of Chongqing Primary and Secondary School(No.CY240806).