期刊文献+

Optimizing photothermal CO_(2) reduction through integrated band division utilization and thermal management structure

原文传递
导出
摘要 Solar-driven photothermal catalytic CO_(2) conversion into fuels offers a promising approach to reducing fossil fuel dependence.To enhance the efficiency of photothermal CO_(2) reduction,photothermal catalyst design must not only sustain the high temperatures required for the reaction but also effectively utilize the entire solar spectrum.In this study,we present a novel photothermal catalyst architecture BiVO_(4)/Bi/BiOCl that surpasses traditional designs by integrating plasmonic metal Bi as the“hot spot”and BiOCl as the thermal insulation layer on the outermost part.This structure realizes thermal management,contributing to maintaining the high temperatures required for the reaction.The BiVO_(4)/Bi/BiOCl multi-component system synergistically absorbs the full solar light spectrum and achieves band-division utilization:short-and mid-wavelengths drive reduction and oxidation reactions,respectively,while long-wavelengths induce the photothermal effect.The BiVO4/Bi/BiOCl catalyst demonstrates high-efficiency CO_(2) conversion performance in an outdoor concentrating system,achieving a CO production rate of 9.5μmol/h.This work presents a design strategy for functional photothermal catalysts,making them viable candidates for industrial-scale CO_(2) conversion processes.
出处 《Nano Research》 2025年第2期227-234,共8页 纳米研究(英文版)
基金 This work is supported by the National Natural Science Foundation of China(No.52488201) the Natural Science Basic Research Program of Shaanxi(No.2024JC-YBMS-284) the Sichuan Science and Technology Program(No.2024YFHZ0037) the Fundamental Research Funds for the Central Universities。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部