期刊文献+

Tuning electrochemical properties of carbon nanofiber electrodes with selenium heteroatoms for flexible zinc ion capacitors

在线阅读 下载PDF
导出
摘要 The N-doping strategy is considered an effective method to regulate the electronic structure of carbon materials and improve their electrochemical performance.However,how to reasonably regulate the types of N-doping species remains a major challenge.Herein,we reported a self-supporting carbon nanofiber electrode codoped with N and Se(N/Se-CNF)for flexible zinc ion capacitor(ZIC).It was found that Se atoms can induce the reduction of Pyrrole-N,which is favorable for Zn ions transfer.Furthermore,ex-situ characterizations and theoretical density functional theory(DFT)calculations have shown that additional Se atoms can provide abundant reaction sites and reduce the adsorption energy of Zn ions.Accordingly,the N/Se-CNF electrode demonstrates impressive rate performance.The N/Se-CNF electrode shows impressive rate performance,retaining 60%capacitance at 20 A·g^(-1),with an energy density of 95.3 Wh·kg^(-1) and power density of 160.1 W·kg^(-1),and a commendable stability cycle,the capacitance retention is 88.1%after 18,000 cycles at a discharge rate of 5 A·g^(-1).Moreover,a flexible ZIC with N/Se-CNF electrode exhibits a high energy density of 68.8 Wh·kg^(-1) at 160 W·kg^(-1).This strategy innovatively regulates N-doping species and offers potential flexible electrodes for advanced energy storage devices.
出处 《Nano Research Energy》 2024年第4期77-87,共11页 纳米能源研究(英文)
基金 National Natural Science Foundation of China(No.52376060).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部